PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m466.
Published online 2010 March 27. doi:  10.1107/S160053681001113X
PMCID: PMC2984061

[(E)-But-2-enoato-κO]chlorido(2,2′-diamino-4,4′-bi-1,3-thia­zole-κ2 N 3,N 3′)zinc(II) monohydrate

Abstract

In the title compound, [Zn(C4H5O2)Cl(C6H6N4S2)]·H2O, the ZnII cation is coordinated by a bidentate diamino­bithia­zole (DABT) ligand, a but-2-enoate anion and a Cl anion in a distorted tetra­hedral geometry. Within the DABT ligand, the two thia­zole rings are twisted to each other at a dihedral angle of 4.38 (10)°. An intra­molecular N—H(...)O inter­action occurs. The centroid–centroid distance of 3.6650 (17) Å and partially overlapped arrangement between nearly parallel thia­zole rings of adjacent complexes indicate the existence of π–π stacking in the crystal structure. Extensive O—H(...)Cl, O—H(...)O, N—H(...)Cl and N—H(...)O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For the potential applications of metal complexes of diamino­bithia­zole in the biological field, see: Waring (1981 [triangle]); Fisher et al. (1985 [triangle]). For dihedral angles between thia­zole rings in diamino­bithia­zole complexes, see: Du et al. (2010 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m466-scheme1.jpg

Experimental

Crystal data

  • [Zn(C4H5O2)Cl(C6H6N4S2)]·H2O
  • M r = 402.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m466-efi1.jpg
  • a = 7.2782 (13) Å
  • b = 16.2846 (16) Å
  • c = 13.237 (2) Å
  • β = 99.252 (16)°
  • V = 1548.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.04 mm−1
  • T = 294 K
  • 0.36 × 0.30 × 0.24 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.75, T max = 0.88
  • 7862 measured reflections
  • 2735 independent reflections
  • 2293 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.080
  • S = 1.05
  • 2735 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001113X/ng2750sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001113X/ng2750Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

Some metal complexes with 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown the potential application in the biological field (Waring, 1981; Fisher et al., 1985). As a part of serial structural investigation of metal complexes with DABT, the title ZnII complex was prepared in the laboratory and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The ZnII cation is coordinated by a diaminobithiazole (DABT) ligand, a but-2-enoate anion and a Cl- anion in a distorted tetrahedral geometry (Table 1). Within the DABT ligand the two thiazole rings are twisted to each other at a dihedral angle of 4.38 (10)°, which agrees with 9.51 (17)° found in a PbII complex of DABT (Du et al., 2010) and 9.5 (2)° found in a CdII complex of DABT (Zhang et al., 2006). The partially overlapped arrangement of centroids distance of 3.6650 (17) Å between nearly parallel thiazole rings of the adjacent complexes indicate the existence of π-π stacking in the crystal structure (Fig. 2). The extensive hydrogen bonding help to stabilize the crystal structure (Table 2).

Experimental

A water-ethanol solution (20 ml, 1:1) of DABT (0.10 g, 0.5 mmol) and ZnCl2 (0.07 g, 0.5 mmol) was refluxed for 10 min, then an aqueous solution (20 ml) of (E)-but-2-enoatic acid (0.09 g, 1 mmol) and NaOH (0.04 g, 1 mmol) was mixed with the above solution. The mixture was refluxed for 6 h and then filtered. The single crystals of the title compound were obtained from the filtrate after a week.

Refinement

H atoms of water molecule were located in a difference Fourier map and were refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.96 Å (methyl), 0.93 Å (aromatic) and N—H = 0.86 Å, and refined in the riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.
The molecular structure of the title compound with 40% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonding.
Fig. 2.
The partially overlapped arrangement between thiazole rings showing π-π stacking [symmetry code: (i) 1-x, -y, 1-z].

Crystal data

[Zn(C4H5O2)Cl(C6H6N4S2)]·H2OF(000) = 816
Mr = 402.18Dx = 1.725 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3446 reflections
a = 7.2782 (13) Åθ = 2.0–24.6°
b = 16.2846 (16) ŵ = 2.04 mm1
c = 13.237 (2) ÅT = 294 K
β = 99.252 (16)°Block, yellow
V = 1548.5 (4) Å30.36 × 0.30 × 0.24 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer2735 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.75, Tmax = 0.88k = −12→19
7862 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0353P)2 + 1.093P] where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.77894 (5)0.12724 (2)0.64617 (2)0.03260 (13)
Cl11.01129 (13)0.21725 (6)0.67179 (7)0.0541 (3)
S10.93933 (12)−0.14538 (5)0.65212 (7)0.0433 (2)
S20.56191 (12)0.09881 (5)0.30033 (6)0.0418 (2)
N10.8456 (3)0.00649 (15)0.64140 (17)0.0314 (6)
N20.9835 (4)−0.03495 (18)0.8057 (2)0.0483 (7)
H2A0.97370.01340.83050.058*
H2B1.0326−0.07400.84470.058*
N30.6716 (3)0.10813 (15)0.49432 (17)0.0299 (5)
N40.5365 (4)0.22969 (16)0.4215 (2)0.0444 (7)
H4A0.55080.25450.47960.053*
H4B0.48590.25490.36700.053*
O10.5737 (3)0.15367 (14)0.72007 (17)0.0471 (6)
O20.7729 (4)0.11162 (17)0.8535 (2)0.0630 (7)
O1W0.4071 (4)0.29467 (17)0.6138 (2)0.0726 (8)
H1A0.29090.28350.60790.087*
H1B0.45220.25920.65870.087*
C10.9224 (4)−0.04933 (19)0.7066 (2)0.0351 (7)
C20.8373 (4)−0.10659 (19)0.5354 (2)0.0396 (8)
H20.8137−0.13680.47510.047*
C30.7965 (4)−0.02684 (18)0.5437 (2)0.0316 (7)
C40.7091 (4)0.02855 (18)0.4637 (2)0.0309 (7)
C50.6607 (4)0.0136 (2)0.3637 (2)0.0386 (7)
H50.6782−0.03630.33250.046*
C60.5924 (4)0.15275 (19)0.4159 (2)0.0333 (7)
C70.6148 (5)0.1325 (2)0.8138 (3)0.0448 (8)
C80.4511 (6)0.1316 (2)0.8698 (3)0.0541 (9)
H80.33770.15090.83570.065*
C90.4583 (6)0.1061 (2)0.9613 (3)0.0623 (11)
H90.57450.09090.99630.075*
C100.2972 (7)0.0984 (3)1.0172 (3)0.0724 (13)
H10A0.30610.13971.06960.109*
H10B0.29810.04501.04790.109*
H10C0.18340.10570.97020.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.0384 (2)0.0298 (2)0.0298 (2)−0.00060 (15)0.00584 (14)−0.00417 (15)
Cl10.0597 (6)0.0545 (6)0.0507 (5)−0.0236 (4)0.0161 (4)−0.0186 (4)
S10.0460 (5)0.0295 (4)0.0551 (5)0.0035 (4)0.0103 (4)0.0042 (4)
S20.0460 (5)0.0489 (5)0.0286 (4)−0.0057 (4)0.0004 (3)−0.0015 (4)
N10.0353 (14)0.0292 (13)0.0305 (13)−0.0011 (11)0.0076 (10)0.0008 (11)
N20.0629 (19)0.0439 (17)0.0357 (15)0.0110 (14)0.0010 (13)0.0064 (13)
N30.0316 (13)0.0310 (13)0.0279 (12)−0.0041 (11)0.0069 (10)−0.0008 (10)
N40.0572 (18)0.0363 (16)0.0371 (15)0.0029 (13)0.0001 (13)0.0059 (12)
O10.0528 (15)0.0469 (14)0.0449 (14)0.0028 (11)0.0173 (11)−0.0083 (11)
O20.0653 (19)0.0609 (17)0.0627 (17)0.0061 (14)0.0103 (14)−0.0015 (14)
O1W0.0642 (18)0.072 (2)0.084 (2)−0.0139 (15)0.0188 (15)−0.0228 (16)
C10.0323 (17)0.0348 (17)0.0397 (18)−0.0008 (14)0.0100 (13)0.0035 (14)
C20.046 (2)0.0319 (18)0.0428 (18)−0.0028 (14)0.0115 (15)−0.0064 (14)
C30.0298 (16)0.0315 (17)0.0353 (16)−0.0052 (13)0.0110 (12)−0.0043 (13)
C40.0310 (16)0.0304 (16)0.0329 (16)−0.0055 (13)0.0098 (12)−0.0025 (13)
C50.0449 (19)0.0372 (18)0.0343 (17)−0.0060 (15)0.0081 (14)−0.0069 (14)
C60.0337 (17)0.0347 (17)0.0309 (16)−0.0053 (13)0.0038 (13)0.0006 (13)
C70.056 (2)0.0315 (18)0.050 (2)−0.0028 (16)0.0166 (17)−0.0093 (16)
C80.062 (2)0.051 (2)0.051 (2)0.0083 (18)0.0151 (18)−0.0034 (18)
C90.079 (3)0.050 (2)0.062 (3)0.014 (2)0.022 (2)0.002 (2)
C100.097 (3)0.063 (3)0.069 (3)0.017 (2)0.048 (3)0.011 (2)

Geometric parameters (Å, °)

Zn—O11.961 (2)O1—C71.275 (4)
Zn—N12.029 (2)O2—C71.234 (4)
Zn—N32.060 (2)O1W—H1A0.8564
Zn—Cl12.2223 (9)O1W—H1B0.8550
S1—C21.723 (3)C2—C31.340 (4)
S1—C11.735 (3)C2—H20.9300
S2—C51.718 (3)C3—C41.457 (4)
S2—C61.747 (3)C4—C51.336 (4)
N1—C11.315 (4)C5—H50.9300
N1—C31.395 (4)C7—C81.502 (5)
N2—C11.336 (4)C8—C91.273 (5)
N2—H2A0.8600C8—H80.9300
N2—H2B0.8600C9—C101.490 (5)
N3—C61.321 (4)C9—H90.9300
N3—C41.398 (4)C10—H10A0.9600
N4—C61.323 (4)C10—H10B0.9600
N4—H4A0.8600C10—H10C0.9600
N4—H4B0.8600
O1—Zn—N1115.69 (10)C2—C3—N1115.2 (3)
O1—Zn—N3108.68 (10)C2—C3—C4128.1 (3)
N1—Zn—N383.01 (9)N1—C3—C4116.7 (2)
O1—Zn—Cl1113.65 (7)C5—C4—N3115.0 (3)
N1—Zn—Cl1117.66 (7)C5—C4—C3128.5 (3)
N3—Zn—Cl1114.11 (7)N3—C4—C3116.5 (2)
C2—S1—C189.60 (15)C4—C5—S2111.1 (2)
C5—S2—C689.66 (15)C4—C5—H5124.5
C1—N1—C3111.0 (2)S2—C5—H5124.5
C1—N1—Zn136.7 (2)N3—C6—N4125.2 (3)
C3—N1—Zn112.28 (18)N3—C6—S2112.9 (2)
C1—N2—H2A120.0N4—C6—S2121.9 (2)
C1—N2—H2B120.0O2—C7—O1123.1 (3)
H2A—N2—H2B120.0O2—C7—C8123.1 (3)
C6—N3—C4111.3 (2)O1—C7—C8113.7 (3)
C6—N3—Zn137.1 (2)C9—C8—C7124.0 (4)
C4—N3—Zn111.23 (18)C9—C8—H8118.0
C6—N4—H4A120.0C7—C8—H8118.0
C6—N4—H4B120.0C8—C9—C10125.8 (4)
H4A—N4—H4B120.0C8—C9—H9117.1
C7—O1—Zn110.3 (2)C10—C9—H9117.1
H1A—O1W—H1B100.6C9—C10—H10A109.5
N1—C1—N2124.2 (3)C9—C10—H10B109.5
N1—C1—S1113.6 (2)H10A—C10—H10B109.5
N2—C1—S1122.1 (2)C9—C10—H10C109.5
C3—C2—S1110.6 (2)H10A—C10—H10C109.5
C3—C2—H2124.7H10B—C10—H10C109.5
S1—C2—H2124.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl1i0.862.563.345 (3)152
O1W—H1B···O10.862.042.859 (4)160
N2—H2A···O20.862.222.959 (4)144
N2—H2B···O1Wii0.862.233.032 (4)154
N4—H4A···O1W0.862.303.043 (4)145
N4—H4B···Cl1iii0.862.663.393 (3)144

Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+3/2; (iii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2750).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Du, M., Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m343–m344. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Waring, M. J. (1981). Annu. Rev. Biochem.50, 159–192. [PubMed]
  • Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944–m1945.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography