PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o836.
Published online 2010 March 13. doi:  10.1107/S1600536810008378
PMCID: PMC2984060

7-Pivaloyl-5,6-dihydro-4H-naphtho[3,2,1-de]isoquinoline-4,6-dione

Abstract

In the crystal structure of the title compound, C21H17NO3, the dibenzo–isoquinoline–dione unit has a planar structure, the maximum atomic deviation being 0.091 (3) Å. The crystal structure is stabilized by π–π stacking [centroid–centroid distance = 3.851 (2) Å] and inter­molecular N—H(...)O hydrogen bonding.

Related literature

The title compound is an azonafide analogue. For the bio­logical activity of 1,3,4(2H)-isoquinoline­trione derivatives, see: Malamas et al. (1994 [triangle]); Hall et al. (1994 [triangle]). For the anti­tumor properties of azonafide and analogues, see: Sami et al. (2000 [triangle]); Hutchings et al. (1988 [triangle]). For the synthesis, see: Zhang et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o836-scheme1.jpg

Experimental

Crystal data

  • C21H17NO3
  • M r = 331.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o836-efi1.jpg
  • a = 11.569 (2) Å
  • b = 9.1150 (18) Å
  • c = 15.746 (3) Å
  • β = 101.12 (3)°
  • V = 1629.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.10 × 0.10 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1994 [triangle]) T min = 0.991, T max = 0.996
  • 3103 measured reflections
  • 2950 independent reflections
  • 1264 reflections with I > 2σ(I)
  • R int = 0.056
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.077
  • S = 1.00
  • 2950 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008378/xu2713sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008378/xu2713Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK2007132).

supplementary crystallographic information

Comment

1,3,4(2H)-Isoquinolinetrione derivatives have a variety of biological activities and are synthetic precursors for many naturally occurring alkaloids (Malamas et al. 1994; Hall et al. 1994). Moreover, many 2-[2'-(dimethyl-amino)ethyl]-1,2-dihydro-3H-dibenz[de, h]- isoquinoline-1,3-dione(azonafide) analogues with structural variations in the side chain and the bent phenanthrene nucleus have shown significant antitumor properties (Sami et al. 2000; Hutchings et al. 1988). As part of our work involving the synthesis of a series of azonafide analogues from 1,3,4(2H)-isoquinolinetrione we report herein the crystal structure of the title compound (Fig. 1).

The carbonyl group forms a dihedral angle of 78.8 (3)° with the phenanthrene moiety. The crystal structure is stabilized by intermolecular π-π stacking; centroids distance between nearly parallel C6-benzene and C17ii-benzene rings is 3.851 (2) Å (symmetry code: (ii) 2-x, -y, 1-z]. In addition the intermolecular N—H···O hydrogen bonding further stabilize the crystal structure.

Experimental

A solution of 1,3,4(2H)-isoquinolinetriones (175 mg, 1 mmol) and tert-butyl phenyl acetylene (316 mg, 2 mmol) in anhydrous acetonitrile (50 ml) was purged with dry argon for 10 min and then irradiated for 24 h under continuous argon purging. The single crystals of the title compound were obtained from the reaction mixture. The light source was a medium-pressure mercury lamp (500 W) in a cooling water jacket that was further surrounded by a layer of filter solution (1 cm thick, 20% aqueous sodium nitrite) to cut off light of wavelength shorter than 400 nm (Zhang et al., 2000).

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aromatic atoms, 0.96 Å for the CH3 groups and 0.86 Å for the N—H group, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids shown at 30% probability ellipsoids for non-H atoms.

Crystal data

C21H17NO3F(000) = 696
Mr = 331.36Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.569 (2) Åθ = 9–12°
b = 9.1150 (18) ŵ = 0.09 mm1
c = 15.746 (3) ÅT = 298 K
β = 101.12 (3)°Block, light-yellow
V = 1629.3 (6) Å30.10 × 0.10 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1264 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 0→13
Absorption correction: ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1994)k = 0→10
Tmin = 0.991, Tmax = 0.996l = −18→18
3103 measured reflections3 standard reflections every 200 reflections
2950 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.001P)2] where P = (Fo2 + 2Fc2)/3
2950 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.9224 (2)0.3212 (3)0.52319 (16)0.0380 (8)
H0A0.94330.40460.54670.046*
O10.7998 (2)−0.0308 (3)0.72692 (14)0.0517 (7)
O20.9979 (2)0.3921 (2)0.40785 (14)0.0494 (7)
O30.8470 (2)0.2652 (2)0.64021 (14)0.0508 (7)
C10.5388 (3)−0.0139 (4)0.6829 (2)0.0769 (14)
H1A0.5228−0.08120.63520.115*
H1B0.46700.03330.68970.115*
H1C0.5713−0.06640.73490.115*
C20.5766 (3)0.1815 (4)0.5817 (2)0.0675 (13)
H2A0.56300.11230.53490.101*
H2B0.63100.25520.57040.101*
H2C0.50350.22710.58700.101*
C30.6483 (3)0.2081 (4)0.7420 (2)0.0781 (15)
H3A0.70270.28320.73260.117*
H3B0.68030.15510.79390.117*
H3C0.57500.25240.74780.117*
C40.6277 (3)0.1027 (4)0.6652 (2)0.0461 (10)
C50.7422 (3)0.0215 (4)0.6623 (2)0.0358 (9)
C60.7748 (3)−0.0144 (4)0.5757 (2)0.0337 (9)
C70.7494 (3)−0.1610 (4)0.5410 (2)0.0358 (9)
C80.7003 (3)−0.2677 (4)0.5887 (2)0.0504 (11)
H8A0.6861−0.24450.64330.061*
C90.6734 (3)−0.4046 (4)0.5553 (3)0.0584 (12)
H9A0.6409−0.47360.58740.070*
C100.6942 (3)−0.4420 (4)0.4742 (2)0.0560 (12)
H10A0.6738−0.53460.45140.067*
C110.7448 (3)−0.3419 (4)0.4277 (2)0.0457 (11)
H11A0.7606−0.36900.37420.055*
C120.7736 (3)−0.1988 (4)0.4589 (2)0.0351 (9)
C130.8287 (3)−0.0921 (4)0.4115 (2)0.0361 (9)
C140.8587 (3)0.0469 (4)0.4492 (2)0.0314 (9)
C150.8305 (3)0.0825 (4)0.5310 (2)0.0320 (9)
C160.8571 (3)−0.1202 (4)0.3306 (2)0.0430 (10)
H16A0.8379−0.21100.30480.052*
C170.9120 (3)−0.0188 (4)0.2882 (2)0.0480 (11)
H17A0.9299−0.04150.23460.058*
C180.9412 (3)0.1181 (4)0.3250 (2)0.0417 (10)
H18A0.97820.18720.29590.050*
C190.9154 (3)0.1513 (4)0.4046 (2)0.0324 (9)
C200.9491 (3)0.2966 (4)0.4427 (2)0.0358 (9)
C210.8659 (3)0.2269 (4)0.5700 (2)0.0364 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.052 (2)0.0271 (19)0.0377 (18)−0.0090 (16)0.0150 (16)−0.0042 (15)
O10.0629 (19)0.0489 (18)0.0445 (16)0.0042 (15)0.0135 (14)0.0078 (14)
O20.070 (2)0.0339 (16)0.0499 (16)−0.0110 (14)0.0247 (14)0.0060 (13)
O30.073 (2)0.0420 (17)0.0425 (15)−0.0127 (15)0.0247 (15)−0.0123 (13)
C10.061 (3)0.071 (3)0.109 (4)−0.017 (3)0.044 (3)0.007 (3)
C20.058 (3)0.052 (3)0.090 (3)0.008 (2)0.009 (3)0.009 (3)
C30.079 (3)0.070 (3)0.094 (3)0.002 (3)0.040 (3)−0.031 (3)
C40.046 (3)0.041 (3)0.054 (3)−0.001 (2)0.017 (2)−0.004 (2)
C50.050 (3)0.024 (2)0.035 (2)−0.004 (2)0.011 (2)0.0057 (18)
C60.044 (2)0.027 (2)0.030 (2)0.0027 (19)0.0083 (18)−0.0013 (18)
C70.044 (3)0.022 (2)0.042 (2)0.0019 (19)0.010 (2)0.0068 (19)
C80.067 (3)0.032 (2)0.056 (3)0.002 (2)0.020 (2)0.005 (2)
C90.074 (3)0.040 (3)0.067 (3)−0.005 (3)0.027 (3)0.007 (2)
C100.069 (3)0.026 (2)0.073 (3)−0.008 (2)0.014 (3)0.000 (2)
C110.057 (3)0.027 (2)0.052 (3)0.000 (2)0.005 (2)−0.007 (2)
C120.037 (2)0.028 (2)0.040 (2)0.0029 (19)0.0064 (19)−0.0003 (19)
C130.039 (2)0.035 (2)0.034 (2)0.002 (2)0.0067 (19)−0.0011 (19)
C140.032 (2)0.029 (2)0.034 (2)0.0041 (18)0.0072 (18)0.0045 (18)
C150.036 (2)0.026 (2)0.036 (2)0.0004 (18)0.0107 (18)−0.0004 (18)
C160.055 (3)0.034 (2)0.041 (2)0.006 (2)0.014 (2)−0.004 (2)
C170.069 (3)0.046 (3)0.033 (2)0.001 (2)0.020 (2)0.000 (2)
C180.052 (3)0.036 (2)0.039 (2)−0.003 (2)0.013 (2)−0.001 (2)
C190.037 (2)0.027 (2)0.034 (2)0.0038 (19)0.0084 (18)−0.0022 (18)
C200.046 (3)0.029 (2)0.033 (2)0.004 (2)0.0090 (19)0.0032 (18)
C210.038 (2)0.037 (2)0.037 (2)0.001 (2)0.0119 (19)−0.002 (2)

Geometric parameters (Å, °)

N—C211.376 (4)C7—C121.417 (4)
N—C201.379 (3)C8—C91.366 (4)
N—H0A0.8600C8—H8A0.9300
O1—C51.201 (3)C9—C101.387 (4)
O2—C201.224 (3)C9—H9A0.9300
O3—C211.219 (3)C10—C111.369 (4)
C1—C41.541 (4)C10—H10A0.9300
C1—H1A0.9600C11—C121.410 (4)
C1—H1B0.9600C11—H11A0.9300
C1—H1C0.9600C12—C131.447 (4)
C2—C41.514 (4)C13—C161.399 (4)
C2—H2A0.9600C13—C141.413 (4)
C2—H2B0.9600C14—C191.416 (4)
C2—H2C0.9600C14—C151.426 (4)
C3—C41.527 (4)C15—C211.476 (4)
C3—H3A0.9600C16—C171.366 (4)
C3—H3B0.9600C16—H16A0.9300
C3—H3C0.9600C17—C181.390 (4)
C4—C51.526 (4)C17—H17A0.9300
C5—C61.520 (4)C18—C191.378 (4)
C6—C151.365 (4)C18—H18A0.9300
C6—C71.452 (4)C19—C201.475 (4)
C7—C81.413 (4)
C21—N—C20127.1 (3)C8—C9—C10120.8 (4)
C21—N—H0A116.4C8—C9—H9A119.6
C20—N—H0A116.4C10—C9—H9A119.6
C4—C1—H1A109.5C11—C10—C9119.7 (4)
C4—C1—H1B109.5C11—C10—H10A120.1
H1A—C1—H1B109.5C9—C10—H10A120.1
C4—C1—H1C109.5C10—C11—C12121.8 (4)
H1A—C1—H1C109.5C10—C11—H11A119.1
H1B—C1—H1C109.5C12—C11—H11A119.1
C4—C2—H2A109.5C11—C12—C7117.8 (3)
C4—C2—H2B109.5C11—C12—C13122.7 (3)
H2A—C2—H2B109.5C7—C12—C13119.4 (3)
C4—C2—H2C109.5C16—C13—C14117.7 (3)
H2A—C2—H2C109.5C16—C13—C12123.4 (3)
H2B—C2—H2C109.5C14—C13—C12118.9 (3)
C4—C3—H3A109.5C13—C14—C19119.6 (3)
C4—C3—H3B109.5C13—C14—C15120.2 (3)
H3A—C3—H3B109.5C19—C14—C15120.2 (3)
C4—C3—H3C109.5C6—C15—C14122.1 (3)
H3A—C3—H3C109.5C6—C15—C21118.9 (3)
H3B—C3—H3C109.5C14—C15—C21119.0 (3)
C2—C4—C5113.6 (3)C17—C16—C13122.3 (3)
C2—C4—C3111.3 (3)C17—C16—H16A118.8
C5—C4—C3108.9 (3)C13—C16—H16A118.8
C2—C4—C1108.8 (3)C16—C17—C18120.1 (3)
C5—C4—C1106.5 (3)C16—C17—H17A120.0
C3—C4—C1107.4 (3)C18—C17—H17A120.0
O1—C5—C6118.8 (3)C19—C18—C17119.9 (3)
O1—C5—C4120.7 (3)C19—C18—H18A120.0
C6—C5—C4119.9 (3)C17—C18—H18A120.0
C15—C6—C7118.9 (3)C18—C19—C14120.4 (3)
C15—C6—C5123.1 (3)C18—C19—C20118.7 (3)
C7—C6—C5117.9 (3)C14—C19—C20120.9 (3)
C8—C7—C12119.2 (3)O2—C20—N120.0 (3)
C8—C7—C6120.4 (3)O2—C20—C19124.4 (3)
C12—C7—C6120.4 (3)N—C20—C19115.5 (3)
C9—C8—C7120.6 (4)O3—C21—N119.6 (3)
C9—C8—H8A119.7O3—C21—C15123.3 (3)
C7—C8—H8A119.7N—C21—C15117.2 (3)
C2—C4—C5—O1170.9 (3)C12—C13—C14—C15−2.5 (5)
C3—C4—C5—O146.3 (4)C7—C6—C15—C143.4 (5)
C1—C4—C5—O1−69.3 (4)C5—C6—C15—C14−179.1 (3)
C2—C4—C5—C6−18.5 (5)C7—C6—C15—C21−174.6 (3)
C3—C4—C5—C6−143.2 (3)C5—C6—C15—C212.9 (5)
C1—C4—C5—C6101.2 (4)C13—C14—C15—C60.2 (5)
O1—C5—C6—C15−105.0 (4)C19—C14—C15—C6179.3 (3)
C4—C5—C6—C1584.3 (4)C13—C14—C15—C21178.3 (3)
O1—C5—C6—C772.5 (4)C19—C14—C15—C21−2.7 (5)
C4—C5—C6—C7−98.2 (4)C14—C13—C16—C170.1 (5)
C15—C6—C7—C8175.1 (3)C12—C13—C16—C17−178.2 (3)
C5—C6—C7—C8−2.5 (5)C13—C16—C17—C18−0.3 (6)
C15—C6—C7—C12−4.9 (5)C16—C17—C18—C190.4 (5)
C5—C6—C7—C12177.5 (3)C17—C18—C19—C14−0.3 (5)
C12—C7—C8—C9−1.7 (6)C17—C18—C19—C20179.0 (3)
C6—C7—C8—C9178.3 (4)C13—C14—C19—C180.1 (5)
C7—C8—C9—C100.2 (6)C15—C14—C19—C18−179.0 (3)
C8—C9—C10—C111.6 (6)C13—C14—C19—C20−179.2 (3)
C9—C10—C11—C12−2.0 (6)C15—C14—C19—C201.7 (5)
C10—C11—C12—C70.5 (5)C21—N—C20—O2178.6 (3)
C10—C11—C12—C13179.0 (4)C21—N—C20—C19−1.6 (5)
C8—C7—C12—C111.3 (5)C18—C19—C20—O20.9 (6)
C6—C7—C12—C11−178.7 (3)C14—C19—C20—O2−179.8 (3)
C8—C7—C12—C13−177.3 (3)C18—C19—C20—N−178.9 (3)
C6—C7—C12—C132.7 (5)C14—C19—C20—N0.4 (5)
C11—C12—C13—C160.7 (5)C20—N—C21—O3−179.0 (3)
C7—C12—C13—C16179.3 (3)C20—N—C21—C150.6 (5)
C11—C12—C13—C14−177.6 (3)C6—C15—C21—O3−0.7 (5)
C7—C12—C13—C141.0 (5)C14—C15—C21—O3−178.8 (3)
C16—C13—C14—C190.0 (5)C6—C15—C21—N179.6 (3)
C12—C13—C14—C19178.4 (3)C14—C15—C21—N1.6 (5)
C16—C13—C14—C15179.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.052.911 (3)174

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2713).

References

  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hutchings, M. G., Chippendale, A. M. & Ferguson, I. (1988). Tetrahedron, 44, 3727–3734.
  • Malamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem.37, 2043–2058. [PubMed]
  • Sami, S. M., Dorr, R. T., Alberts, D. S., Solyom, A. M. & Remers, W. A. (2000). J. Med. Chem.43, 3067–3073. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Y., Qian, S.-P., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett.41, 8141–8145.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography