PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m348–m349.
Published online 2010 March 3. doi:  10.1107/S1600536810007063
PMCID: PMC2984058

Poly[di-μ2-chlorido-dichlorido(μ3-di­methyl sulfoxide-κ3 O:O:S)(μ2-di­methyl sulfoxide-κ2 O:S)ruthenium(III)sodium]

Abstract

The structure of the title compound, [NaRuCl4(C2H6OS)2]n, comprises centrosymmetric [RuCl2(DMSO)Na(DMSO)Cl2Ru] units (DMSO is dimethyl sulfoxide, C2H6OS), with two Ru atoms, each lying on a crystallographic centre of inversion, connected via Na atoms, DMSO and chloride ligands into a two-dimensional (110) array. Both RuIII atoms are octa­hedrally coordinated by four chloride ligands in the equatorial plane and by two DMSO mol­ecules in apical positions within a RuCl4S2 donor set. The Na atom is surrounded by three chloride anions and three O atoms derived from three DMSO mol­ecules, with the resulting Cl3O3 donor set defining an octa­hedron. The crystal structure is further stabilized by inter­atomic inter­actions of the types C(...)Cl [C—Cl = 3.284 (2) Å], C—H(...)Cl [C(...)Cl = 3.903 (3) Å] and C—H(...)O [C(...)O = 3.376 (3) Å].

Related literature

For structures of similar ruthenium complexes, see: Alessio et al. (1993 [triangle]); Piggot et al. (2004 [triangle]); Anderson et al. (2007 [triangle]). For Na—O and Na—Cl distances in related structures, see: Alessio et al. (1991 [triangle]); Iengo et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m348-scheme1.jpg

Experimental

Crystal data

  • [NaRuCl4(C2H6OS)2]
  • M r = 422.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m348-efi1.jpg
  • a = 11.9042 (3) Å
  • b = 8.0692 (2) Å
  • c = 13.7873 (3) Å
  • β = 98.470 (2)°
  • V = 1309.93 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.34 mm−1
  • T = 120 K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur2 CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.652, T max = 0.721
  • 10197 measured reflections
  • 2300 independent reflections
  • 2105 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.050
  • S = 1.15
  • 2300 reflections
  • 134 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007063/tk2632sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007063/tk2632Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this work by the Ministry of Education, Youth and Sports of the Czech Republic (MSM6198959218) and the Grant Agency of the Czech Republic (GAČR 203/08/P436) is gratefully acknowledged.

supplementary crystallographic information

Comment

The title complex, (I), was prepared as a part of our study of simple ruthenium(III) complexes of the composition M[RuCl4(DMSO)2] with the different types of inorganic and organic cations [M]. In the crystal structure of (I), the centrosymmetric [RuCl2(DMSO)Na(DMSO)Cl2Ru] units are present; each ruthenium atom lies on a crystallographic centre of inversion whereas all other atoms lie in general positions. Each of the RuIII atoms is hexacoordinated by two sulphur atoms from two DMSO molecules in apical positions and four chlorido ligands in an equatorial plane (Fig. 1). Each ruthenium atom exists within an octahedral trans-RuCl4S2 donor set.

Both octahedra exhibit similar Ru—S bond lengths [Ru1—S1 = 2.3350 (5) and Ru2—S2= 2.3373 (6) Å] in contrast to the Ru—Cl bond lengths, which exhibit similar values in the Ru1 octahedron [2.3551 (5) and 2.3509 (5) Å] but differ significantly in the Ru2 octahedron [2.3353 (6) and 2.3663 (6) Å]. The Ru—Cl bond lengths within the [RuCl2(DMSO)Na(DMSO)Cl2Ru] unit do not differ markedly from those observed in Na[trans-RuCl4(DMSO)(pyr)].DMSO, where pyr = 1,4-pyrazine, [Ru—Cl = (2.3395 (8) - 2.3754 (7) Å] (Anderson et al., 2007) and in Na2[{trans-RuCl4(DMSO)}2(µ-pyrimidine)], where the Ru—Cl bond lengths are in the range of 2.338 (2) - 2.361 (2) Å (Iengo et al., 1999), while the Ru—S distances in (I) are slightly longer than those observed in the above-mentioned complexes (Ru—S are in the range of 2.281 (2) - 2.3027 (7) Å).

The Na cation has six atoms in its closest octahedrally coordinated environment with the resulting Cl3O3 donor set and it is surrounded by six donor interactions, represented by dashed lines (Figs. 1 and 2). The distance between the two nearest Na atoms equals 3.4968 (19) Å. The distances of the Na—O and Na—Cl donor interactions vary from 2.2974 (18) to 2.4155 (18) Å, and from 2.7773 (11) to 2.9374 (10) Å, respectively. Similar values of the Na—O distances [2.272 (4) - 2.418 (4) Å] were found in Na[trans-RuCl4(DMSO)(NH3)].DMSO (Alessio et al., 1993) and similar Na—Cl distances [2.776 (2) - 2.922 (2) Å] were observed in Na[trans-RuCl4(DMSO)(pyr)].DMSO (Anderson et al., 2007).

The trans-[Ru(DMSO)2Cl4] complex anion is connected to four sodium cations, two DMSO molecules and four chlorido ligands into infinite two dimensional array in the ab plane (Fig. 2). The crystal strucure of (I) is furter stabilized by non-bonding interactions of the C···Cl type [C4···Cl3ii is 3.284 (2) Å (ii = x, y+1, z)], which connect two Ru2 anions in the b direction (Fig. 2). The planes are cross connected, in the c direction, by the weak C···Cl [C3—Cl4vii is 3.903 (3) Å] and C—H···O [C1···O2vii is 3.376 (3) Å (vii = x, 1/2-y, -1/2+z)] type interactions (Fig. 3).

Experimental

The title complex was prepared by a slightly modified literature procedure (Alessio et al., 1991). The salt [H+(DMSO)2][trans-Ru(DMSO)2Cl4] (1 mmol) was dissolved in a mixture of ethanol (20 ml) and distilled water (0.3 ml). The orange solution was filtered, and then, an aqueous solution (0.3 ml) of NaCl (0.07 g, 2.8 mmol) was added during stirring. The yellow precipitate which formed after several minutes was filtered off, washed with cold acetone, and dried in air (yield 50%). Single crystals were obtained from the filtrate by slow evaporation after several days.

Refinement

All H-atoms were located in difference maps and refined using a riding model, with C–H distances of 0.98 Å, and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
Part of the crystal structure of the title compound (I). The non-H atoms are drawn as 70% probability displacement ellipsoids. Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y, -z+1; (iv) -x, -y, 1-z; (v) x, y-1, z; (vi) -1+x, -1+y, ...
Fig. 2.
Part of the crystal structure of (I), showing the formation of the two dimensional array (a view along the c axis). Dashed lines represent non-covalent interactions of the C···Cl, Na···O and Na···Cl ...
Fig. 3.
Part of the crystal structure of (I), showing the formation of the two dimensional array (a view along the b axis). The H-atoms have been omitted for clarity. Dashed lines represent interactions of the C···Cl and C—H···O ...

Crystal data

[NaRuCl4(C2H6OS)2]F(000) = 828
Mr = 422.12Dx = 2.140 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10079 reflections
a = 11.9042 (3) Åθ = 2.9–32.0°
b = 8.0692 (2) ŵ = 2.34 mm1
c = 13.7873 (3) ÅT = 120 K
β = 98.470 (2)°Prism, orange
V = 1309.93 (5) Å30.20 × 0.20 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer2300 independent reflections
Radiation source: fine-focus sealed tube2105 reflections with I > 2σ(I)
Enhance (Mo) X-ray SourceRint = 0.021
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 2.9°
rotation method, ω–scanh = −14→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −9→9
Tmin = 0.652, Tmax = 0.721l = −14→16
10197 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0269P)2 + 0.8654P] where P = (Fo2 + 2Fc2)/3
2300 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.50000.50000.50000.00777 (8)
S10.45936 (5)0.30580 (7)0.37416 (4)0.00948 (13)
Cl10.35603 (5)0.67940 (7)0.42755 (4)0.01284 (13)
Na10.35677 (8)0.00303 (10)0.51520 (7)0.0144 (2)
O10.47177 (13)0.12823 (19)0.40510 (11)0.0125 (3)
C10.31978 (19)0.3274 (3)0.30958 (17)0.0148 (5)
H1A0.30500.23870.26080.022*
H1B0.31250.43510.27650.022*
H1C0.26480.32020.35580.022*
Ru20.00000.00000.50000.00862 (9)
S20.12479 (5)−0.14419 (7)0.61717 (4)0.01206 (13)
Cl20.63676 (5)0.64639 (7)0.42686 (4)0.01285 (13)
O20.24699 (13)−0.0998 (2)0.62514 (11)0.0147 (4)
C20.5426 (2)0.3346 (3)0.27921 (16)0.0145 (5)
H2A0.51630.25930.22490.022*
H2B0.62240.31120.30420.022*
H2C0.53520.44940.25590.022*
Cl30.07120 (5)0.23663 (7)0.58529 (4)0.01694 (14)
C30.0887 (2)−0.1226 (4)0.73698 (18)0.0224 (6)
H3A0.1455−0.17940.78410.034*
H3B0.0138−0.17180.73900.034*
H3C0.0868−0.00480.75390.034*
Cl4−0.14497 (5)−0.01787 (7)0.59997 (4)0.01570 (14)
C40.1151 (2)−0.3619 (3)0.6015 (2)0.0262 (6)
H4A0.1588−0.41680.65830.039*
H4B0.1458−0.39340.54200.039*
H4C0.0354−0.39600.59560.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.00907 (15)0.00689 (15)0.00724 (14)0.00048 (9)0.00081 (11)0.00072 (9)
S10.0118 (3)0.0075 (3)0.0088 (3)0.0004 (2)0.0006 (2)0.0000 (2)
Cl10.0137 (3)0.0105 (3)0.0133 (3)0.0032 (2)−0.0017 (2)0.0002 (2)
Na10.0131 (5)0.0128 (5)0.0173 (5)−0.0001 (3)0.0023 (4)0.0027 (4)
O10.0165 (9)0.0073 (8)0.0136 (8)0.0005 (6)0.0015 (7)0.0005 (6)
C10.0134 (12)0.0148 (12)0.0148 (12)0.0005 (10)−0.0027 (10)−0.0016 (10)
Ru20.00868 (15)0.00670 (15)0.01060 (15)−0.00093 (9)0.00177 (11)−0.00048 (9)
S20.0113 (3)0.0106 (3)0.0142 (3)−0.0004 (2)0.0014 (2)0.0025 (2)
Cl20.0140 (3)0.0126 (3)0.0126 (3)−0.0021 (2)0.0042 (2)0.0007 (2)
O20.0108 (8)0.0183 (9)0.0148 (8)0.0001 (7)0.0013 (7)0.0030 (7)
C20.0195 (13)0.0135 (12)0.0110 (11)−0.0006 (10)0.0042 (10)−0.0009 (9)
Cl30.0202 (3)0.0107 (3)0.0194 (3)−0.0040 (2)0.0013 (3)−0.0048 (2)
C30.0176 (13)0.0349 (16)0.0147 (12)0.0010 (11)0.0022 (11)0.0066 (11)
Cl40.0116 (3)0.0220 (3)0.0142 (3)−0.0003 (2)0.0040 (2)0.0019 (2)
C40.0267 (15)0.0113 (13)0.0383 (16)0.0002 (11)−0.0032 (13)0.0039 (11)

Geometric parameters (Å, °)

Ru1—S12.3350 (5)Ru2—Cl3iv2.3353 (6)
Ru1—S1i2.3351 (5)Ru2—Cl32.3353 (6)
Ru1—Cl12.3509 (5)Ru2—S2iv2.3373 (6)
Ru1—Cl1i2.3509 (5)Ru2—S22.3373 (6)
Ru1—Cl2i2.3551 (5)Ru2—Cl4iv2.3663 (6)
Ru1—Cl22.3551 (5)Ru2—Cl42.3663 (6)
S1—O11.4962 (16)S2—O21.4863 (16)
S1—C21.770 (2)S2—C41.772 (3)
S1—C11.774 (2)S2—C31.776 (2)
Cl1—Na1ii2.8769 (10)Cl2—Na1i2.9374 (10)
Na1—O22.2974 (18)C2—H2A0.9800
Na1—O12.4105 (17)C2—H2B0.9800
Na1—O1iii2.4155 (18)C2—H2C0.9800
Na1—Cl4iv2.7773 (11)C3—H3A0.9800
Na1—Cl1v2.8769 (10)C3—H3B0.9800
Na1—Cl2i2.9374 (10)C3—H3C0.9800
Na1—Na1iii3.4968 (19)Cl4—Na1iv2.7772 (11)
O1—Na1iii2.4156 (18)C4—H4A0.9800
C1—H1A0.9800C4—H4B0.9800
C1—H1B0.9800C4—H4C0.9800
C1—H1C0.9800
S1—Ru1—S1i179.999 (1)S1—C1—H1B109.5
S1—Ru1—Cl192.250 (19)H1A—C1—H1B109.5
S1i—Ru1—Cl187.751 (19)S1—C1—H1C109.5
S1—Ru1—Cl1i87.751 (19)H1A—C1—H1C109.5
S1i—Ru1—Cl1i92.248 (19)H1B—C1—H1C109.5
Cl1—Ru1—Cl1i180.0Cl3iv—Ru2—Cl3179.999 (1)
S1—Ru1—Cl2i84.313 (19)Cl3iv—Ru2—S2iv84.97 (2)
S1i—Ru1—Cl2i95.687 (19)Cl3—Ru2—S2iv95.03 (2)
Cl1—Ru1—Cl2i89.091 (19)Cl3iv—Ru2—S295.03 (2)
Cl1i—Ru1—Cl2i90.909 (19)Cl3—Ru2—S284.97 (2)
S1—Ru1—Cl295.686 (19)S2iv—Ru2—S2179.999 (1)
S1i—Ru1—Cl284.314 (19)Cl3iv—Ru2—Cl4iv89.90 (2)
Cl1—Ru1—Cl290.909 (19)Cl3—Ru2—Cl4iv90.10 (2)
Cl1i—Ru1—Cl289.091 (19)S2iv—Ru2—Cl4iv90.63 (2)
Cl2i—Ru1—Cl2180.0S2—Ru2—Cl4iv89.37 (2)
O1—S1—C2107.12 (10)Cl3iv—Ru2—Cl490.10 (2)
O1—S1—C1106.43 (10)Cl3—Ru2—Cl489.90 (2)
C2—S1—C1101.59 (11)S2iv—Ru2—Cl489.37 (2)
O1—S1—Ru1115.46 (7)S2—Ru2—Cl490.63 (2)
C2—S1—Ru1112.59 (8)Cl4iv—Ru2—Cl4180.0
C1—S1—Ru1112.54 (8)O2—S2—C4107.04 (12)
Ru1—Cl1—Na1ii115.06 (3)O2—S2—C3106.03 (11)
O2—Na1—O1176.27 (7)C4—S2—C3100.97 (14)
O2—Na1—O1iii93.79 (6)O2—S2—Ru2116.54 (7)
O1—Na1—O1iii87.14 (6)C4—S2—Ru2112.72 (10)
O2—Na1—Cl4iv80.56 (5)C3—S2—Ru2112.19 (9)
O1—Na1—Cl4iv100.01 (5)Ru1—Cl2—Na1i111.02 (3)
O1iii—Na1—Cl4iv156.08 (5)S2—O2—Na1133.14 (10)
O2—Na1—Cl1v88.98 (5)S1—C2—H2A109.5
O1—Na1—Cl1v94.75 (5)S1—C2—H2B109.5
O1iii—Na1—Cl1v75.12 (4)H2A—C2—H2B109.5
Cl4iv—Na1—Cl1v81.52 (3)S1—C2—H2C109.5
O2—Na1—Cl2i99.39 (5)H2A—C2—H2C109.5
O1—Na1—Cl2i76.89 (4)H2B—C2—H2C109.5
O1iii—Na1—Cl2i108.18 (5)S2—C3—H3A109.5
Cl4iv—Na1—Cl2i95.69 (3)S2—C3—H3B109.5
Cl1v—Na1—Cl2i170.66 (4)H3A—C3—H3B109.5
O2—Na1—Na1iii137.18 (6)S2—C3—H3C109.5
O1—Na1—Na1iii43.63 (4)H3A—C3—H3C109.5
O1iii—Na1—Na1iii43.51 (4)H3B—C3—H3C109.5
Cl4iv—Na1—Na1iii138.71 (5)Ru2—Cl4—Na1iv110.05 (3)
Cl1v—Na1—Na1iii83.09 (3)S2—C4—H4A109.5
Cl2i—Na1—Na1iii93.39 (4)S2—C4—H4B109.5
S1—O1—Na1122.65 (9)H4A—C4—H4B109.5
S1—O1—Na1iii126.22 (9)S2—C4—H4C109.5
Na1—O1—Na1iii92.86 (6)H4A—C4—H4C109.5
S1—C1—H1A109.5H4B—C4—H4C109.5

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2632).

References

  • Alessio, E., Balducci, G., Calligaris, M., Costa, G., Attia, G. M. & Mestroni, G. (1993). Inorg. Chim. Acta, 30, 609–618.
  • Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M. & Attia, G. M. (1991). Inorg. Chim. Acta, 203, 205–217.
  • Anderson, C. M., Herman, A. & Rochon, F. D. (2007). Polyhedron, 26, 3661–3668.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Iengo, E., Mestroni, G., Geremia, S., Calligaris, M. & Alessio, E. (1999). J. Chem. Soc. Dalton Trans. pp. 3361–3371.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Piggot, P. M. T., Hall, L. A., White, A. J. P. & Williams, D. J. (2004). Inorg. Chim. Acta, 357, 250–258.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography