PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m448–m449.
Published online 2010 March 27. doi:  10.1107/S1600536810010706
PMCID: PMC2984056

Diaqua­bis(4-methyl­amino­benzoato-κO)bis­(nicotinamide-κN 1)cobalt(II)

Abstract

The asymmetric unit of the title CoII complex, [Co(C8H8NO2)2(C6H6N2O)2(H2O)2], contains two half complex mol­ecules with similar structures. The CoII atoms are each located on an inversion center and each is coordinated by two 4-methyl­amino­benzoate (PMAB), two nicotinamide (NA) ligands and two water mol­ecules in a distorted octa­hedral coordination. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 3.0 (3) and 2.54 (19)°, while the pyridine and benzene rings are oriented at dihedral angles of 67.40 (8) and 66.25 (8)°. In the crystal structure, inter­molecular O—H(...)O and N—H(...)O hydrogen bonds link the mol­ecules into a supra­molecular structure.

Related literature

For niacin, see: Krishnamachari (1974 [triangle]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972 [triangle]). For related structures, see: Hökelek et al. (1996 [triangle]); Hökelek & Necefoğlu (1998 [triangle]); Hökelek et al. (2009a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m448-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H8NO2)2(C6H6N2O)2(H2O)2]
  • M r = 639.53
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m448-efi1.jpg
  • a = 9.9014 (7) Å
  • b = 11.2891 (8) Å
  • c = 14.1824 (9) Å
  • α = 107.554 (5)°
  • β = 92.975 (4)°
  • γ = 92.836 (4)°
  • V = 1505.89 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 294 K
  • 0.31 × 0.14 × 0.11 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.889, T max = 0.934
  • 25128 measured reflections
  • 7337 independent reflections
  • 3927 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.120
  • S = 0.99
  • 7337 reflections
  • 433 parameters
  • 11 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010706/xu2735sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010706/xu2735Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was financially supported by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

supplementary crystallographic information

Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title complex, (I), contains two half molecules with Co atoms on inversion centers. Each molecule contains two 4-methylaminobenzoate (PMAB) and two nicotinamide (NA) ligands and two coordinated water molecules, all ligands being monodentate. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (V) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VI) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in the other structures all ligands being monodentate.

Each of the two molecules in the asymmetric unit of the title complex, [Co(PMAB)2(NA)2(H2O)2], has a centre of symmetry and CoII ion is surrounded by two PMAB and two NA ligands and two water molecules (Fig. 1). All ligands are monodentate. In each molecule, the four O atoms (O1, O4, O1', O4' and O5, O8, O5'', o8'') in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N2, N2' and N5, N5'') in the axial positions (Fig. 1).

The near equality of the C1—O1 [1.274 (3) Å], C1—O2 [1.255 (3) Å] and C15—O5 [1.276 (3) Å], C15—O6 [1.262 (3) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Co—O bond lengths are 2.0717 (19) and 2.0993 (19) Å (Table 1) and the Co atoms are displaced out of the least-squares planes of the carboxylate groups [(O1/C1/O2) and (O5/C15/O6)] by -0.4948 (1) and -0.3495 (1) Å, respectively. The dihedral angles between the planar carboxylate groups and the benzene rings A (C2—C7) and C (C16—C21) are 2.96 (27)° and 2.54 (19)°, respectively, while that between rings A and B (N2/C9—C13) and C and D (N5/C23—C27) are 67.40 (8) and 66.25 (8)°, respectively.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared by the reaction of CoSO4.7(H2O) (1.41 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-methylaminobenzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving orange single crystals.

Refinement

Atoms H1, H4A (for NH), H31, H32, H61, H62 (for NH2) and H41, H42, H81, H82 (for H2O) were located in a difference Fourier map and refined isotropically, with restrains of N3—H31 = 0.870 (19), N3—H32 = 0.909 (19), N4—H4A = 0.87 (2), N6—H61 = 0.904 (19), N6—H62 = 0.878 (19), O4—H41 = 0.876 (17), O4—H42 = 0.89 (4), O8—H81 = 0.907 (14), O8—H82 = 0.932 (18) Å and H41—O4—H42 = 106 (3) and H81—O8—H82 = 106 (2)°. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operators:(') 1 - x, 1 - y, 1 - z; ('') 2 - x, 2 - y, -z.

Crystal data

[Co(C8H8NO2)2(C6H6N2O)2(H2O)2]Z = 2
Mr = 639.53F(000) = 666
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9014 (7) ÅCell parameters from 4808 reflections
b = 11.2891 (8) Åθ = 2.5–22.9°
c = 14.1824 (9) ŵ = 0.63 mm1
α = 107.554 (5)°T = 294 K
β = 92.975 (4)°Block, orange
γ = 92.836 (4)°0.31 × 0.14 × 0.11 mm
V = 1505.89 (18) Å3

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer7337 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
graphiteRint = 0.050
[var phi] and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→13
Tmin = 0.889, Tmax = 0.934k = −14→15
25128 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3
7337 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.44 e Å3
11 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.50000.03935 (17)
Co21.00001.00000.00000.03728 (17)
O10.56594 (18)0.56020 (18)0.38612 (14)0.0449 (5)
O20.71996 (19)0.7140 (2)0.46562 (16)0.0532 (6)
O30.8902 (2)0.2578 (2)0.27847 (16)0.0663 (7)
O40.4510 (3)0.3195 (2)0.40609 (19)0.0673 (7)
H410.447 (4)0.285 (3)0.3417 (13)0.095 (14)*
H420.383 (3)0.283 (4)0.428 (3)0.135 (18)*
O51.07631 (18)0.95050 (19)0.12042 (14)0.0472 (5)
O61.1978 (2)0.7922 (2)0.04475 (15)0.0528 (6)
O70.5387 (3)0.7866 (4)−0.21529 (18)0.1282 (14)
O80.98305 (19)1.1857 (2)0.09213 (16)0.0472 (5)
H810.958 (3)1.207 (3)0.1553 (12)0.083 (12)*
H820.918 (3)1.215 (3)0.056 (2)0.104 (15)*
N10.8652 (4)0.6271 (3)0.0185 (3)0.0932 (13)
H10.931 (4)0.680 (4)0.027 (3)0.101 (16)*
N20.7005 (2)0.4443 (2)0.52402 (18)0.0444 (6)
N31.0849 (3)0.2554 (3)0.3640 (2)0.0585 (8)
H311.122 (3)0.222 (3)0.3086 (17)0.072 (12)*
H321.135 (3)0.264 (3)0.4217 (18)0.075 (12)*
N41.3862 (4)0.8673 (3)0.4966 (2)0.0738 (9)
H4A1.441 (4)0.808 (3)0.495 (3)0.125 (19)*
N50.7987 (2)0.9412 (2)0.02697 (17)0.0395 (6)
N60.3613 (3)0.7723 (3)−0.1287 (2)0.0589 (8)
H610.322 (3)0.782 (4)−0.0709 (19)0.097 (15)*
H620.313 (3)0.739 (3)−0.1852 (18)0.094 (14)*
C10.6647 (3)0.6378 (3)0.3879 (2)0.0394 (7)
C20.7153 (3)0.6358 (3)0.2905 (2)0.0407 (7)
C30.8201 (3)0.7192 (3)0.2835 (2)0.0469 (8)
H30.85710.77930.34070.056*
C40.8694 (3)0.7144 (3)0.1946 (3)0.0557 (9)
H40.94040.77040.19250.067*
C50.8157 (4)0.6279 (3)0.1075 (3)0.0608 (9)
C60.7106 (4)0.5444 (3)0.1136 (2)0.0702 (11)
H60.67310.48470.05640.084*
C70.6619 (3)0.5501 (3)0.2042 (2)0.0581 (9)
H70.59100.49430.20680.070*
C80.8172 (6)0.5427 (5)−0.0756 (3)0.130 (2)
H8A0.86740.5600−0.12660.194*
H8B0.72270.5524−0.08800.194*
H8C0.82900.4588−0.07560.194*
C90.7586 (3)0.4567 (3)0.6138 (2)0.0510 (8)
H90.71260.49490.66940.061*
C100.8847 (3)0.4149 (3)0.6270 (2)0.0586 (9)
H100.92280.42540.69050.070*
C110.9534 (3)0.3580 (3)0.5463 (2)0.0504 (8)
H111.03870.33000.55440.060*
C120.8947 (3)0.3427 (3)0.4525 (2)0.0372 (7)
C130.7679 (3)0.3875 (3)0.4461 (2)0.0427 (7)
H130.72730.37710.38330.051*
C140.9565 (3)0.2822 (3)0.3585 (2)0.0434 (7)
C151.1621 (3)0.8704 (3)0.1220 (2)0.0412 (7)
C161.2203 (3)0.8699 (3)0.2201 (2)0.0392 (7)
C171.3176 (3)0.7886 (3)0.2286 (2)0.0444 (7)
H171.34640.73290.17160.053*
C181.3718 (3)0.7889 (3)0.3193 (2)0.0506 (8)
H181.43720.73380.32270.061*
C191.3313 (3)0.8698 (3)0.4065 (2)0.0512 (8)
C201.2335 (3)0.9511 (3)0.3987 (2)0.0610 (9)
H201.20431.00650.45560.073*
C211.1798 (3)0.9499 (3)0.3069 (2)0.0542 (8)
H211.11411.00460.30330.065*
C221.3480 (4)0.9441 (4)0.5901 (3)0.0900 (13)
H22A1.39680.92340.64260.135*
H22B1.25240.93050.59460.135*
H22C1.36931.03000.59590.135*
C230.7582 (3)0.9468 (3)0.1165 (2)0.0473 (8)
H230.81860.98120.17160.057*
C240.6309 (3)0.9038 (3)0.1305 (2)0.0555 (9)
H240.60690.90800.19390.067*
C250.5397 (3)0.8547 (3)0.0506 (2)0.0500 (8)
H250.45250.82690.05900.060*
C260.5796 (3)0.8473 (3)−0.0430 (2)0.0413 (7)
C270.7095 (3)0.8909 (3)−0.0501 (2)0.0423 (7)
H270.73700.8850−0.11300.051*
C280.4910 (3)0.7982 (3)−0.1358 (2)0.0597 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0366 (3)0.0502 (4)0.0358 (3)0.0086 (3)0.0118 (2)0.0174 (3)
Co20.0287 (3)0.0528 (4)0.0361 (3)0.0039 (2)0.0022 (2)0.0220 (3)
O10.0377 (11)0.0619 (13)0.0409 (12)−0.0003 (10)0.0061 (9)0.0244 (11)
O20.0475 (13)0.0688 (15)0.0435 (13)−0.0024 (11)0.0024 (10)0.0185 (12)
O30.0491 (13)0.1049 (19)0.0384 (13)0.0182 (13)−0.0002 (11)0.0104 (13)
O40.0795 (18)0.0634 (16)0.0509 (17)−0.0046 (13)0.0278 (14)0.0030 (14)
O50.0372 (11)0.0688 (14)0.0457 (13)0.0121 (10)0.0036 (9)0.0312 (11)
O60.0536 (13)0.0680 (15)0.0419 (13)0.0137 (11)0.0028 (11)0.0229 (12)
O70.091 (2)0.226 (4)0.0340 (15)−0.069 (2)0.0089 (14)0.001 (2)
O80.0396 (12)0.0611 (14)0.0403 (13)0.0042 (10)0.0031 (10)0.0140 (12)
N10.137 (3)0.079 (3)0.060 (2)−0.028 (2)0.047 (2)0.015 (2)
N20.0420 (14)0.0562 (16)0.0387 (15)0.0089 (12)0.0067 (12)0.0188 (13)
N30.0435 (17)0.078 (2)0.048 (2)0.0220 (15)0.0064 (16)0.0084 (17)
N40.107 (3)0.070 (2)0.0462 (19)0.017 (2)−0.0184 (18)0.0227 (17)
N50.0330 (13)0.0517 (15)0.0356 (14)0.0027 (11)0.0041 (11)0.0158 (12)
N60.0455 (18)0.073 (2)0.049 (2)−0.0099 (15)−0.0066 (16)0.0087 (17)
C10.0327 (16)0.0487 (19)0.0444 (19)0.0144 (14)0.0059 (14)0.0233 (16)
C20.0422 (17)0.0439 (18)0.0419 (18)0.0071 (14)0.0093 (14)0.0204 (15)
C30.0459 (18)0.0496 (19)0.0495 (19)−0.0011 (14)0.0016 (15)0.0224 (16)
C40.054 (2)0.061 (2)0.060 (2)−0.0080 (16)0.0127 (17)0.0312 (19)
C50.084 (3)0.052 (2)0.052 (2)−0.0005 (18)0.0278 (19)0.0217 (18)
C60.105 (3)0.055 (2)0.045 (2)−0.020 (2)0.022 (2)0.0087 (18)
C70.068 (2)0.055 (2)0.050 (2)−0.0122 (17)0.0185 (17)0.0154 (18)
C80.215 (6)0.108 (4)0.057 (3)−0.038 (4)0.054 (3)0.012 (3)
C90.052 (2)0.066 (2)0.0403 (19)0.0103 (16)0.0120 (16)0.0213 (17)
C100.054 (2)0.083 (3)0.041 (2)0.0130 (18)−0.0018 (16)0.0220 (19)
C110.0420 (18)0.065 (2)0.047 (2)0.0130 (15)−0.0002 (15)0.0199 (17)
C120.0331 (15)0.0448 (17)0.0357 (17)0.0051 (13)0.0026 (13)0.0149 (14)
C130.0405 (17)0.057 (2)0.0330 (17)0.0088 (14)0.0019 (14)0.0163 (15)
C140.0361 (17)0.0513 (19)0.0422 (19)0.0084 (14)0.0035 (15)0.0123 (16)
C150.0321 (16)0.053 (2)0.0464 (19)−0.0002 (14)0.0020 (14)0.0266 (17)
C160.0391 (16)0.0417 (17)0.0414 (18)0.0016 (13)−0.0041 (14)0.0208 (15)
C170.0459 (17)0.0493 (19)0.0418 (18)0.0056 (14)0.0030 (14)0.0193 (15)
C180.0485 (19)0.053 (2)0.056 (2)0.0137 (15)−0.0057 (16)0.0263 (18)
C190.062 (2)0.050 (2)0.044 (2)0.0020 (16)−0.0131 (17)0.0217 (17)
C200.084 (3)0.057 (2)0.041 (2)0.0205 (19)−0.0042 (18)0.0108 (17)
C210.064 (2)0.051 (2)0.049 (2)0.0187 (16)−0.0065 (17)0.0167 (17)
C220.134 (4)0.087 (3)0.046 (2)0.007 (3)−0.020 (2)0.021 (2)
C230.0425 (18)0.065 (2)0.0356 (17)−0.0014 (15)−0.0003 (14)0.0192 (16)
C240.0474 (19)0.088 (3)0.0362 (18)−0.0034 (18)0.0104 (15)0.0261 (18)
C250.0361 (17)0.068 (2)0.0447 (19)−0.0073 (15)0.0085 (15)0.0170 (17)
C260.0357 (16)0.0489 (18)0.0381 (17)−0.0016 (13)0.0039 (13)0.0120 (15)
C270.0402 (17)0.0529 (19)0.0339 (17)0.0028 (14)0.0089 (14)0.0125 (15)
C280.055 (2)0.071 (2)0.043 (2)−0.0177 (18)0.0018 (17)0.0048 (18)

Geometric parameters (Å, °)

Co1—O12.0553 (17)C3—H30.9300
Co1—O1i2.0553 (17)C4—C51.384 (4)
Co1—O42.088 (2)C4—H40.9300
Co1—O4i2.088 (2)C5—C61.392 (4)
Co1—N22.153 (2)C6—C71.381 (4)
Co1—N2i2.153 (2)C6—H60.9300
Co2—O52.0696 (18)C7—H70.9300
Co2—O5ii2.0696 (18)C8—H8A0.9600
Co2—O82.129 (2)C8—H8B0.9600
Co2—O8ii2.129 (2)C8—H8C0.9600
Co2—N52.159 (2)C9—H90.9300
Co2—N5ii2.159 (2)C10—C91.380 (4)
O1—C11.274 (3)C10—H100.9300
O2—C11.255 (3)C11—C101.366 (4)
O3—C141.229 (3)C11—H110.9300
O4—H410.876 (17)C12—C111.381 (4)
O4—H420.89 (4)C12—C141.481 (4)
O5—C151.276 (3)C13—C121.385 (4)
O6—C151.262 (3)C13—H130.9300
O7—C281.218 (4)C15—C161.479 (4)
O8—H810.907 (14)C16—C171.389 (4)
O8—H820.932 (18)C16—C211.382 (4)
N1—C51.376 (4)C17—C181.365 (4)
N1—C81.428 (5)C17—H170.9300
N1—H10.84 (4)C18—C191.389 (4)
N2—C91.335 (3)C18—H180.9300
N2—C131.330 (3)C19—C201.389 (4)
N3—C141.325 (4)C20—C211.375 (4)
N3—H310.870 (19)C20—H200.9300
N3—H320.909 (19)C21—H210.9300
N4—C191.371 (4)C22—H22A0.9600
N4—C221.430 (5)C22—H22B0.9600
N4—H4A0.87 (2)C22—H22C0.9600
N5—C231.336 (3)C23—H230.9300
N5—C271.331 (3)C24—C231.373 (4)
N6—C281.319 (4)C24—H240.9300
N6—H610.904 (19)C25—C241.369 (4)
N6—H620.878 (19)C25—H250.9300
C1—C21.488 (4)C26—C251.383 (4)
C2—C31.393 (4)C26—C281.484 (4)
C2—C71.371 (4)C27—C261.374 (4)
C3—C41.362 (4)C27—H270.9300
O1i—Co1—O1180.000 (1)C7—C6—H6119.9
O1—Co1—O492.44 (9)C2—C7—C6121.8 (3)
O1i—Co1—O487.56 (9)C2—C7—H7119.1
O1—Co1—O4i87.56 (9)C6—C7—H7119.1
O1i—Co1—O4i92.44 (9)N1—C8—H8A109.5
O1—Co1—N289.34 (8)N1—C8—H8B109.5
O1i—Co1—N290.66 (8)N1—C8—H8C109.5
O1—Co1—N2i90.66 (8)H8A—C8—H8B109.5
O1i—Co1—N2i89.34 (8)H8A—C8—H8C109.5
O4i—Co1—O4180.00 (9)H8B—C8—H8C109.5
O4—Co1—N288.05 (10)N2—C9—C10122.1 (3)
O4i—Co1—N291.95 (10)N2—C9—H9118.9
O4—Co1—N2i91.95 (10)C10—C9—H9118.9
O4i—Co1—N2i88.05 (10)C9—C10—H10120.1
N2i—Co1—N2180.0C11—C10—C9119.8 (3)
O5ii—Co2—O5180.00 (10)C11—C10—H10120.1
O5—Co2—O890.59 (8)C10—C11—C12119.2 (3)
O5ii—Co2—O889.41 (8)C10—C11—H11120.4
O5—Co2—O8ii89.41 (8)C12—C11—H11120.4
O5ii—Co2—O8ii90.59 (8)C11—C12—C13117.2 (3)
O5—Co2—N589.28 (8)C11—C12—C14125.2 (3)
O5ii—Co2—N590.72 (8)C13—C12—C14117.6 (2)
O5—Co2—N5ii90.72 (8)N2—C13—C12124.2 (3)
O5ii—Co2—N5ii89.28 (8)N2—C13—H13117.9
O8ii—Co2—O8180.00 (12)C12—C13—H13117.9
O8—Co2—N592.47 (8)O3—C14—N3121.5 (3)
O8ii—Co2—N587.53 (8)O3—C14—C12120.8 (3)
O8—Co2—N5ii87.53 (8)N3—C14—C12117.7 (3)
O8ii—Co2—N5ii92.47 (8)O5—C15—C16117.4 (3)
N5—Co2—N5ii180.0O6—C15—O5123.2 (3)
C1—O1—Co1128.64 (18)O6—C15—C16119.4 (3)
Co1—O4—H41134 (2)C17—C16—C15121.3 (3)
Co1—O4—H42111 (3)C21—C16—C17117.2 (3)
H42—O4—H41106 (3)C21—C16—C15121.5 (3)
C15—O5—Co2128.33 (19)C16—C17—H17119.4
Co2—O8—H81125 (2)C18—C17—C16121.1 (3)
Co2—O8—H82103 (2)C18—C17—H17119.4
H81—O8—H82106 (2)C17—C18—C19121.5 (3)
C5—N1—C8124.7 (3)C17—C18—H18119.2
C5—N1—H1111 (3)C19—C18—H18119.2
C8—N1—H1124 (3)N4—C19—C20121.9 (3)
C9—N2—Co1123.3 (2)N4—C19—C18120.3 (3)
C13—N2—Co1119.12 (19)C20—C19—C18117.7 (3)
C13—N2—C9117.5 (2)C19—C20—H20119.9
C14—N3—H31118 (2)C21—C20—C19120.2 (3)
C14—N3—H32124 (2)C21—C20—H20119.9
H31—N3—H32118 (3)C16—C21—H21118.9
C19—N4—C22124.4 (3)C20—C21—C16122.2 (3)
C19—N4—H4A116 (3)C20—C21—H21118.9
C22—N4—H4A119 (3)N4—C22—H22A109.5
C23—N5—Co2124.23 (19)N4—C22—H22B109.5
C27—N5—Co2118.79 (18)N4—C22—H22C109.5
C27—N5—C23116.9 (2)H22A—C22—H22B109.5
C28—N6—H61124 (2)H22A—C22—H22C109.5
C28—N6—H62116 (2)H22B—C22—H22C109.5
H62—N6—H61120 (3)N5—C23—C24122.7 (3)
O1—C1—C2116.6 (3)N5—C23—H23118.7
O2—C1—O1124.1 (3)C24—C23—H23118.7
O2—C1—C2119.3 (3)C23—C24—H24120.2
C3—C2—C1121.4 (3)C25—C24—C23119.6 (3)
C7—C2—C1121.1 (3)C25—C24—H24120.2
C7—C2—C3117.5 (3)C24—C25—C26118.8 (3)
C2—C3—H3119.3C24—C25—H25120.6
C4—C3—C2121.3 (3)C26—C25—H25120.6
C4—C3—H3119.3C25—C26—C28124.6 (3)
C3—C4—C5121.2 (3)C27—C26—C25117.7 (3)
C3—C4—H4119.4C27—C26—C28117.8 (3)
C5—C4—H4119.4N5—C27—C26124.4 (3)
N1—C5—C4120.0 (3)N5—C27—H27117.8
N1—C5—C6122.1 (4)C26—C27—H27117.8
C4—C5—C6117.9 (3)O7—C28—N6122.2 (3)
C5—C6—H6119.9O7—C28—C26119.5 (3)
C7—C6—C5120.2 (3)N6—C28—C26118.3 (3)
O4i—Co1—O1—C136.6 (2)C1—C2—C3—C4177.7 (3)
O4—Co1—O1—C1−143.4 (2)C7—C2—C3—C4−1.1 (4)
N2i—Co1—O1—C1124.6 (2)C1—C2—C7—C6−177.9 (3)
N2—Co1—O1—C1−55.4 (2)C3—C2—C7—C61.0 (5)
O8ii—Co2—O5—C1532.2 (2)C2—C3—C4—C51.1 (5)
O8—Co2—O5—C15−147.8 (2)C3—C4—C5—N1178.4 (3)
N5—Co2—O5—C15119.8 (2)C3—C4—C5—C6−0.8 (5)
N5ii—Co2—O5—C15−60.2 (2)N1—C5—C6—C7−178.6 (4)
O1i—Co1—N2—C13138.0 (2)C4—C5—C6—C70.6 (5)
O1—Co1—N2—C13−42.0 (2)C5—C6—C7—C2−0.7 (5)
O4i—Co1—N2—C13−129.5 (2)C11—C10—C9—N2−0.4 (5)
O4—Co1—N2—C1350.5 (2)C12—C11—C10—C9−0.4 (5)
O1i—Co1—N2—C9−37.7 (2)C13—C12—C11—C100.4 (4)
O1—Co1—N2—C9142.3 (2)C14—C12—C11—C10−179.5 (3)
O4i—Co1—N2—C954.8 (2)C11—C12—C14—O3170.4 (3)
O4—Co1—N2—C9−125.2 (2)C11—C12—C14—N3−9.6 (4)
O5ii—Co2—N5—C2733.7 (2)C13—C12—C14—O3−9.5 (4)
O5—Co2—N5—C27−146.3 (2)C13—C12—C14—N3170.5 (3)
O8ii—Co2—N5—C27−56.8 (2)N2—C13—C12—C110.4 (4)
O8—Co2—N5—C27123.2 (2)N2—C13—C12—C14−179.7 (3)
O5ii—Co2—N5—C23−149.3 (2)O5—C15—C16—C17−177.9 (2)
O5—Co2—N5—C2330.7 (2)O5—C15—C16—C212.4 (4)
O8ii—Co2—N5—C23120.2 (2)O6—C15—C16—C172.7 (4)
O8—Co2—N5—C23−59.8 (2)O6—C15—C16—C21−177.0 (3)
Co1—O1—C1—O2−18.0 (4)C15—C16—C17—C18179.6 (3)
Co1—O1—C1—C2162.07 (17)C21—C16—C17—C18−0.7 (4)
Co2—O5—C15—O6−12.4 (4)C15—C16—C21—C20−179.6 (3)
Co2—O5—C15—C16168.20 (17)C17—C16—C21—C200.7 (5)
C8—N1—C5—C4−179.7 (4)C16—C17—C18—C190.5 (5)
C8—N1—C5—C6−0.5 (7)C17—C18—C19—N4179.3 (3)
Co1—N2—C9—C10176.9 (2)C17—C18—C19—C20−0.1 (5)
C13—N2—C9—C101.1 (4)N4—C19—C20—C21−179.3 (3)
Co1—N2—C13—C12−177.1 (2)C18—C19—C20—C210.1 (5)
C9—N2—C13—C12−1.1 (4)C19—C20—C21—C16−0.4 (5)
C22—N4—C19—C18−178.1 (3)C25—C24—C23—N5−1.1 (5)
C22—N4—C19—C201.3 (6)C26—C25—C24—C231.4 (5)
Co2—N5—C23—C24−177.3 (2)C27—C26—C25—C24−0.5 (5)
C27—N5—C23—C24−0.2 (4)C28—C26—C25—C24−179.0 (3)
Co2—N5—C27—C26178.4 (2)C25—C26—C28—O7−174.4 (4)
C23—N5—C27—C261.2 (4)C25—C26—C28—N67.8 (5)
O1—C1—C2—C3178.0 (2)C27—C26—C28—O77.1 (5)
O1—C1—C2—C7−3.1 (4)C27—C26—C28—N6−170.7 (3)
O2—C1—C2—C3−1.9 (4)N5—C27—C26—C25−0.9 (5)
O2—C1—C2—C7176.9 (3)N5—C27—C26—C28177.7 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H41···O7iii0.88 (2)1.75 (2)2.618 (4)173 (4)
O4—H42···O2i0.89 (4)1.86 (4)2.644 (3)146 (4)
O8—H81···O3iv0.91 (2)1.84 (2)2.742 (3)173 (3)
O8—H82···O6ii0.94 (3)1.76 (3)2.648 (3)156 (3)
N3—H32···O2v0.91 (3)2.04 (3)2.939 (4)168 (3)
N4—H4A···O4v0.88 (4)2.53 (4)3.288 (4)145 (3)
N6—H61···O6vi0.90 (3)2.08 (3)2.973 (4)169 (3)
N6—H62···O3iii0.88 (3)2.36 (3)3.124 (4)146 (3)

Symmetry codes: (iii) −x+1, −y+1, −z; (i) −x+1, −y+1, −z+1; (iv) x, y+1, z; (ii) −x+2, −y+2, −z; (v) −x+2, −y+1, −z+1; (vi) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2735).

References

  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. [PMC free article] [PubMed]
  • Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514. [PMC free article] [PubMed]
  • Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608. [PMC free article] [PubMed]
  • Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.
  • Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.
  • Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography