PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m451–m452.
Published online 2010 March 27. doi:  10.1107/S1600536810010032
PMCID: PMC2984055

Di-μ-thio­cyanato-bis­[bis­(tri-p-tolyl­phosphine)silver(I)] 0.35-hydrate

Abstract

In the binuclear centrosymmetric title compound, [Ag2(NCS)2(C21H21P)4]·0.35H2O, a pseudo-polymorph of [Ag2(NCS)2(C21H21P)4]·2CH3CN, the Ag atom is coordinated by two phosphine ligands and two bridging thio­cyanate ligands in a distorted tetra­hedral configuration. The crystal structure exhibits inter­molecular C—H(...)π inter­actions.

Related literature

For a general introduction to the coordination chemistry of silver–phosphine complexes, see: Meijboom et al. (2009 [triangle]). For the original preparation of silver–phosphine complexes, see: Mann et al. (1937 [triangle]). For related silver(I)–thio­cyanate complexes, see: Bowmaker et al. (1997 [triangle]); Effendy et al. (2005 [triangle]), Venter et al. (2007 [triangle]), Omondi & Meijboom (2010 [triangle]). For related silver(I)–tri-p-tolyl­phosphine complexes, see: Meijboom et al. (2006 [triangle]); Meijboom (2006 [triangle], 2007 [triangle]); Meijboom & Muller (2006 [triangle]); Venter et al. (2006 [triangle]). For bond-length data, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m451-scheme1.jpg

Experimental

Crystal data

  • [Ag2(NCS)2(C21H21P)4]·0.35H2O
  • M r = 1554.94
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m451-efi1.jpg
  • a = 10.5470 (6) Å
  • b = 13.5063 (8) Å
  • c = 14.9779 (8) Å
  • α = 91.575 (1)°
  • β = 110.064 (1)°
  • γ = 105.615 (1)°
  • V = 1913.15 (19) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 173 K
  • 0.42 × 0.35 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.758, T max = 0.903
  • 23789 measured reflections
  • 9487 independent reflections
  • 8868 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.090
  • S = 0.85
  • 9487 reflections
  • 425 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 1.67 e Å−3
  • Δρmin = −1.70 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]), PLATON (Spek, 2009 [triangle]) and DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010032/hg2658sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010032/hg2658Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NMK thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

supplementary crystallographic information

Comment

Silver(I) complexes of the type [AgLnX] (L is a tertiary phosphine or arsine, n = 1–4 and X is a coordinating or noncoordinating anion) were first prepared by Mann et al. (1937) and were the first crystallographic examples of metal phosphine complexes. These compounds display a rich diversity of structural types due to the interplay of parameters such as the geometric flexibility of Ag(I), the bite angle, the electronic properties of the group 15 donor ligand, the coordination of the supporting ligand, etc. (Meijboom et al., 2009).

As part of work that was aimed at the identification of roles the above mentioned properties play during the crystallization of simple silver(I) salts with Group 15 donor ligands with initial focus on tri-p-tolylphosphine complexes (Meijboom et al., 2006; Meijboom, 2006; Meijboom & Muller, 2006; Venter et al., 2006; Meijboom, 2007), we present here a pseudo-polymorph of the previously reported [Ag2(NCS)2(C21H21P)4]2CH3CN (Venter et al., 2007), [Ag2(NCS)2(C21H21P)4]0.35H2O (I). Complex (I) was left standing on the bench top in the lab for a long period of time during which it supposedly absorbed moisture into its structure.

The asymmetric unit of the title compound, Fig. 1, comprises half a unit of the AgI complex (the other half generated by the symmetry operator -x+1, -y+1, -z+1) and 0.35 molecule of H2O. The bond lengths (Allen et al., 1987) and angles (Table 1) are within the normal ranges and are comparable to those of related complexes such as the pseudo-polymorph [Ag2(NCS)2(C21H21P)4].2CH3CN (Venter et al. 2007), [Ag2(NCS)2{P(4—FC6H4)3}4] (Omondi & Meijboom, 2010) and other silver(I) thiocyanate complexes, (Bowmaker et al. 1997; Effendy et al. 2005).

The geometry around the Ag(I) atom is a slightly distorted tetrahedral which is coordinated by the two SCN anions and two phosphine ligands resulting in a dimeric species in which the two Ag(I) centres are bridged by the SCN anions (Table 1).

The crystal structure is stabilized by pairs of C—H···π intermolecular interactions along the crystallographic a and c axes [H225···Cg1 = 2.73 Å, C225—H225···Cg1 = 147° and H135···Cg6 = 2.86 Å, C135—H135···Cg6 = 161° (Fig. 2). Cg1 and Cg6 are the centroids of the C111/C112/C113/C114/C115/C116 and C231/C232/C233/C234/C235/C236 benzene rings]. The symmetry operator for the two interactions is -x, -y+1, -z+1. The two C—H···π interactions result in dimeric pairs of the adjacent molecules involved.

Experimental

AgSCN (0.08g, 0.49 mmol) and P(p</>-tol)3 (0.30g, 0.98 mmol) were dissolved in warm pyridine to give a clear solution which on cooling and solvent evaporation deposited colourless crystals of [Ag2(NCS)2(C21H21P)4].H2O in good yield.

Refinement

All hydrogen atoms were positioned geometrically, with C–H = 0.95 Å for aromatic hydrogens and 0.98 Å for methyl hydrogens, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

CheckCif Alerts explanations

Applying restraints does not seem to remove Hirshfeld Test Diff. There is partial occupation of the O atom. EADP restaraints were applied. The su's on the Cell Angles are true values. The Solvent Disorder fraction too small.

Figures

Fig. 1.
The structure (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Primed atoms were generated ...
Fig. 2.
Packing pattern of (I) as viewed down the crystallographic b axis where the C—H···π intermolecular interactions are shown in dashed lines [Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1 and (iii) x+1, y, ...

Crystal data

[Ag2(NCS)2(C21H21P)4]·0.35H2OZ = 1
Mr = 1554.94F(000) = 803.2
Triclinic, P1Dx = 1.35 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5470 (6) ÅCell parameters from 19388 reflections
b = 13.5063 (8) Åθ = 1.5–28.4°
c = 14.9779 (8) ŵ = 0.70 mm1
α = 91.575 (1)°T = 173 K
β = 110.064 (1)°Plate, colourless
γ = 105.615 (1)°0.42 × 0.35 × 0.15 mm
V = 1913.15 (19) Å3

Data collection

Bruker APEXII CCD diffractometer8868 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.022
Absorption correction: multi-scan (SADABS; Bruker, 2004)θmax = 28.4°, θmin = 1.5°
Tmin = 0.758, Tmax = 0.903h = −13→14
23789 measured reflectionsk = −17→17
9487 independent reflectionsl = −19→19

Refinement

Refinement on F25 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032w = 1/[σ2(Fo2) + (0.0542P)2 + 4.2409P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 0.85Δρmax = 1.67 e Å3
9487 reflectionsΔρmin = −1.70 e Å3
425 parameters

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C0.3928 (2)0.51437 (16)0.57467 (14)0.0177 (4)
C111−0.0803 (2)0.40359 (15)0.16962 (14)0.0156 (4)
C112−0.0451 (2)0.47931 (16)0.11306 (15)0.0195 (4)
H1120.03840.48790.09930.023*
C113−0.1307 (2)0.54193 (16)0.07693 (16)0.0209 (4)
H113−0.10540.59250.03830.025*
C114−0.2536 (2)0.53172 (16)0.09658 (15)0.0201 (4)
C115−0.2896 (2)0.45523 (18)0.15105 (15)0.0218 (4)
H115−0.37380.44620.1640.026*
C116−0.2048 (2)0.39130 (17)0.18733 (15)0.0194 (4)
H116−0.23190.33930.22420.023*
C117−0.3407 (3)0.60450 (19)0.06084 (18)0.0288 (5)
H11A−0.41740.59120.08580.043*
H11B−0.38070.5932−0.00940.043*
H11C−0.28050.67640.08290.043*
C1210.0701 (2)0.26637 (15)0.13329 (14)0.0161 (4)
C122−0.0348 (2)0.23392 (16)0.04197 (14)0.0186 (4)
H122−0.11810.25480.02580.022*
C123−0.0171 (2)0.17082 (17)−0.02548 (15)0.0223 (4)
H123−0.08910.1491−0.08730.027*
C1240.1038 (2)0.13926 (16)−0.00379 (15)0.0219 (4)
C1250.2092 (2)0.17344 (17)0.08672 (16)0.0230 (4)
H1250.29330.15350.10230.028*
C1260.1929 (2)0.23641 (17)0.15464 (15)0.0203 (4)
H1260.26590.25920.2160.024*
C1270.1228 (3)0.06905 (19)−0.07552 (17)0.0303 (5)
H12A0.19330.1091−0.09990.045*
H12B0.03250.0397−0.12890.045*
H12C0.15480.0128−0.04420.045*
C131−0.0335 (2)0.23911 (15)0.28655 (14)0.0156 (4)
C132−0.1165 (2)0.14053 (16)0.23791 (15)0.0204 (4)
H132−0.13560.12590.17140.024*
C133−0.1715 (2)0.06369 (16)0.28579 (16)0.0224 (4)
H133−0.2278−0.00280.25140.027*
C134−0.1454 (2)0.08243 (16)0.38360 (16)0.0203 (4)
C135−0.0651 (2)0.18157 (17)0.43150 (15)0.0231 (4)
H135−0.04860.19670.49760.028*
C136−0.0086 (2)0.25880 (16)0.38437 (15)0.0205 (4)
H1360.04720.32540.41880.025*
C137−0.1997 (3)−0.00233 (18)0.43636 (18)0.0270 (5)
H13A−0.294−0.04560.39490.04*
H13B−0.2050.02860.49440.04*
H13C−0.1354−0.04510.45410.04*
C2110.4186 (2)0.74299 (19)0.44628 (18)0.0284 (3)
C2120.5508 (2)0.72876 (19)0.48426 (18)0.0284 (3)
H2120.56920.67240.45680.034*
C2130.6573 (2)0.79579 (17)0.56212 (16)0.0215 (4)
H2130.74790.78520.58620.026*
C2140.6338 (2)0.87726 (17)0.60492 (15)0.0223 (4)
C2150.4993 (2)0.88878 (19)0.56982 (18)0.0284 (3)
H2150.47990.94290.59970.034*
C2160.3917 (3)0.82230 (19)0.49124 (18)0.0284 (3)
H2160.30010.83130.46850.034*
C2170.7509 (3)0.95257 (19)0.68683 (17)0.0298 (5)
H21A0.77941.01960.66460.045*
H21B0.8320.92540.71010.045*
H21C0.71720.96160.7390.045*
C2210.3423 (2)0.71958 (16)0.24398 (15)0.0178 (4)
C2220.3987 (2)0.82711 (16)0.24913 (16)0.0221 (4)
H2220.41150.87150.30380.026*
C2230.4360 (2)0.86902 (17)0.17507 (18)0.0254 (4)
H2230.47380.94210.17970.03*
C2240.4194 (2)0.80636 (18)0.09378 (17)0.0233 (4)
C2250.3644 (2)0.69922 (17)0.08922 (16)0.0210 (4)
H2250.35230.65490.03470.025*
C2260.3273 (2)0.65665 (16)0.16311 (15)0.0182 (4)
H2260.2910.58350.15870.022*
C2270.4579 (3)0.8511 (2)0.0122 (2)0.0364 (6)
H22A0.37540.8648−0.03480.055*
H22B0.48820.8017−0.01850.055*
H22C0.5350.91610.0370.055*
C2310.1245 (2)0.68002 (15)0.32687 (14)0.0171 (4)
C2320.0794 (2)0.76033 (17)0.28263 (16)0.0210 (4)
H2320.13690.80670.25550.025*
C233−0.0494 (2)0.77291 (17)0.27792 (16)0.0229 (4)
H233−0.07780.82880.24850.028*
C234−0.1373 (2)0.70543 (17)0.31532 (15)0.0203 (4)
C235−0.0920 (2)0.62480 (17)0.35919 (16)0.0223 (4)
H235−0.15020.57770.38530.027*
C2360.0369 (2)0.61247 (16)0.36516 (15)0.0207 (4)
H2360.0660.55740.39570.025*
C237−0.2777 (2)0.7183 (2)0.30916 (19)0.0288 (5)
H23A−0.270.74750.37210.043*
H23B−0.350.65060.28940.043*
H23C−0.30440.76510.26210.043*
N0.3107 (2)0.47534 (14)0.49960 (13)0.0211 (3)
S0.50745 (5)0.56667 (5)0.68345 (4)0.02352 (11)
Ag0.270935 (15)0.468455 (11)0.334821 (10)0.01632 (5)
P10.05204 (5)0.34022 (4)0.22977 (3)0.01412 (10)
P20.29159 (5)0.65734 (4)0.33849 (4)0.01642 (10)
O0.5565 (9)0.2031 (7)0.2512 (6)0.0211 (3)0.176 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C0.0168 (8)0.0207 (9)0.0169 (7)0.0042 (7)0.0089 (6)0.0024 (7)
C1110.0150 (8)0.0153 (9)0.0141 (8)0.0037 (7)0.0032 (7)−0.0010 (7)
C1120.0170 (9)0.0190 (9)0.0220 (10)0.0041 (7)0.0073 (8)0.0036 (8)
C1130.0211 (10)0.0167 (9)0.0219 (10)0.0031 (7)0.0058 (8)0.0048 (7)
C1140.0200 (9)0.0182 (9)0.0182 (9)0.0074 (8)0.0014 (8)−0.0024 (7)
C1150.0187 (9)0.0292 (11)0.0191 (9)0.0094 (8)0.0071 (8)0.0007 (8)
C1160.0186 (9)0.0226 (10)0.0171 (9)0.0056 (8)0.0069 (8)0.0040 (7)
C1170.0273 (11)0.0261 (11)0.0314 (12)0.0150 (9)0.0032 (9)0.0020 (9)
C1210.0167 (9)0.0156 (8)0.0154 (9)0.0034 (7)0.0064 (7)0.0009 (7)
C1220.0200 (9)0.0187 (9)0.0153 (9)0.0050 (7)0.0048 (7)0.0017 (7)
C1230.0284 (11)0.0206 (10)0.0139 (9)0.0041 (8)0.0053 (8)−0.0001 (7)
C1240.0310 (11)0.0165 (9)0.0196 (10)0.0037 (8)0.0135 (9)0.0015 (7)
C1250.0224 (10)0.0226 (10)0.0259 (11)0.0071 (8)0.0112 (9)0.0001 (8)
C1260.0177 (9)0.0216 (10)0.0188 (9)0.0041 (8)0.0046 (8)−0.0017 (8)
C1270.0455 (14)0.0276 (12)0.0223 (11)0.0124 (10)0.0170 (10)−0.0010 (9)
C1310.0154 (8)0.0156 (9)0.0154 (9)0.0045 (7)0.0051 (7)0.0017 (7)
C1320.0229 (10)0.0175 (9)0.0185 (9)0.0021 (8)0.0081 (8)−0.0011 (7)
C1330.0248 (10)0.0155 (9)0.0253 (10)0.0019 (8)0.0107 (9)−0.0007 (8)
C1340.0202 (10)0.0196 (9)0.0232 (10)0.0063 (8)0.0100 (8)0.0056 (8)
C1350.0270 (11)0.0229 (10)0.0168 (9)0.0036 (8)0.0079 (8)0.0008 (8)
C1360.0234 (10)0.0171 (9)0.0167 (9)0.0015 (8)0.0059 (8)−0.0006 (7)
C1370.0323 (12)0.0228 (10)0.0300 (11)0.0066 (9)0.0172 (10)0.0089 (9)
C2110.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)−0.0100 (4)
C2120.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)−0.0100 (4)
C2130.0157 (9)0.0235 (10)0.0219 (10)0.0043 (8)0.0040 (8)0.0012 (8)
C2140.0220 (10)0.0180 (9)0.0198 (10)0.0035 (8)0.0011 (8)0.0003 (8)
C2150.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)−0.0100 (4)
C2160.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)−0.0100 (4)
C2170.0292 (12)0.0235 (11)0.0245 (11)0.0036 (9)−0.0015 (9)−0.0037 (9)
C2210.0143 (9)0.0165 (9)0.0207 (9)0.0033 (7)0.0052 (7)0.0007 (7)
C2220.0203 (10)0.0163 (9)0.0267 (11)0.0026 (8)0.0075 (8)−0.0009 (8)
C2230.0206 (10)0.0180 (10)0.0342 (12)0.0013 (8)0.0091 (9)0.0048 (9)
C2240.0164 (9)0.0272 (11)0.0260 (11)0.0055 (8)0.0078 (8)0.0087 (9)
C2250.0173 (9)0.0243 (10)0.0205 (10)0.0065 (8)0.0058 (8)0.0012 (8)
C2260.0151 (9)0.0171 (9)0.0197 (9)0.0034 (7)0.0043 (7)0.0004 (7)
C2270.0356 (14)0.0398 (14)0.0342 (13)0.0050 (11)0.0173 (11)0.0149 (11)
C2310.0157 (9)0.0165 (9)0.0153 (9)0.0024 (7)0.0031 (7)−0.0022 (7)
C2320.0193 (10)0.0196 (10)0.0230 (10)0.0041 (8)0.0075 (8)0.0047 (8)
C2330.0227 (10)0.0222 (10)0.0232 (10)0.0082 (8)0.0062 (8)0.0049 (8)
C2340.0184 (9)0.0214 (10)0.0178 (9)0.0027 (8)0.0055 (8)−0.0037 (7)
C2350.0234 (10)0.0196 (10)0.0248 (10)0.0038 (8)0.0120 (8)0.0016 (8)
C2360.0237 (10)0.0179 (9)0.0219 (10)0.0054 (8)0.0105 (8)0.0028 (8)
C2370.0226 (11)0.0303 (12)0.0359 (13)0.0099 (9)0.0121 (10)0.0022 (10)
N0.0218 (8)0.0235 (9)0.0175 (6)0.0056 (7)0.0077 (6)0.0034 (6)
S0.0158 (2)0.0346 (3)0.0168 (2)0.0025 (2)0.00627 (18)−0.0048 (2)
Ag0.01599 (8)0.01542 (8)0.01422 (8)0.00279 (5)0.00302 (5)−0.00025 (5)
P10.0136 (2)0.0137 (2)0.0132 (2)0.00289 (17)0.00369 (17)0.00016 (17)
P20.0160 (2)0.0139 (2)0.0169 (2)0.00268 (18)0.00463 (18)−0.00128 (17)
O0.0218 (8)0.0235 (9)0.0175 (6)0.0056 (7)0.0077 (6)0.0034 (6)

Geometric parameters (Å, °)

C—N1.160 (3)C211—P21.822 (2)
C—S1.656 (2)C212—C2131.392 (3)
C111—C1161.395 (3)C212—H2120.95
C111—C1121.400 (3)C213—C2141.379 (3)
C111—P11.820 (2)C213—H2130.95
C112—C1131.387 (3)C214—C2151.387 (3)
C112—H1120.95C214—C2171.510 (3)
C113—C1141.397 (3)C215—C2161.399 (3)
C113—H1130.95C215—H2150.95
C114—C1151.387 (3)C216—H2160.95
C114—C1171.508 (3)C217—H21A0.98
C115—C1161.396 (3)C217—H21B0.98
C115—H1150.95C217—H21C0.98
C116—H1160.95C221—C2261.398 (3)
C117—H11A0.98C221—C2221.402 (3)
C117—H11B0.98C221—P21.827 (2)
C117—H11C0.98C222—C2231.385 (3)
C121—C1261.396 (3)C222—H2220.95
C121—C1221.398 (3)C223—C2241.395 (3)
C121—P11.825 (2)C223—H2230.95
C122—C1231.396 (3)C224—C2251.397 (3)
C122—H1220.95C224—C2271.507 (3)
C123—C1241.389 (3)C225—C2261.386 (3)
C123—H1230.95C225—H2250.95
C124—C1251.393 (3)C226—H2260.95
C124—C1271.512 (3)C227—H22A0.98
C125—C1261.393 (3)C227—H22B0.98
C125—H1250.95C227—H22C0.98
C126—H1260.95C231—C2321.394 (3)
C127—H12A0.98C231—C2361.398 (3)
C127—H12B0.98C231—P21.820 (2)
C127—H12C0.98C232—C2331.392 (3)
C131—C1321.397 (3)C232—H2320.95
C131—C1361.401 (3)C233—C2341.391 (3)
C131—P11.825 (2)C233—H2330.95
C132—C1331.389 (3)C234—C2351.397 (3)
C132—H1320.95C234—C2371.509 (3)
C133—C1341.397 (3)C235—C2361.386 (3)
C133—H1330.95C235—H2350.95
C134—C1351.395 (3)C236—H2360.95
C134—C1371.507 (3)C237—H23A0.98
C135—C1361.391 (3)C237—H23B0.98
C135—H1350.95C237—H23C0.98
C136—H1360.95N—Ag2.3519 (18)
C137—H13A0.98S—Agi2.6062 (6)
C137—H13B0.98Ag—P12.4516 (5)
C137—H13C0.98Ag—P22.4987 (5)
C211—C2121.382 (3)Ag—Si2.6062 (6)
C211—C2161.392 (3)
N—C—S178.0 (2)C213—C214—C217121.2 (2)
C116—C111—C112118.43 (18)C215—C214—C217120.8 (2)
C116—C111—P1123.51 (16)C214—C215—C216121.3 (2)
C112—C111—P1117.43 (15)C214—C215—H215119.3
C113—C112—C111120.79 (19)C216—C215—H215119.3
C113—C112—H112119.6C211—C216—C215120.0 (2)
C111—C112—H112119.6C211—C216—H216120
C112—C113—C114121.0 (2)C215—C216—H216120
C112—C113—H113119.5C214—C217—H21A109.5
C114—C113—H113119.5C214—C217—H21B109.5
C115—C114—C113118.09 (19)H21A—C217—H21B109.5
C115—C114—C117122.0 (2)C214—C217—H21C109.5
C113—C114—C117119.9 (2)H21A—C217—H21C109.5
C114—C115—C116121.5 (2)H21B—C217—H21C109.5
C114—C115—H115119.3C226—C221—C222118.1 (2)
C116—C115—H115119.3C226—C221—P2118.37 (15)
C115—C116—C111120.2 (2)C222—C221—P2123.54 (16)
C115—C116—H116119.9C223—C222—C221120.5 (2)
C111—C116—H116119.9C223—C222—H222119.8
C114—C117—H11A109.5C221—C222—H222119.8
C114—C117—H11B109.5C222—C223—C224121.5 (2)
H11A—C117—H11B109.5C222—C223—H223119.3
C114—C117—H11C109.5C224—C223—H223119.3
H11A—C117—H11C109.5C223—C224—C225117.9 (2)
H11B—C117—H11C109.5C223—C224—C227122.0 (2)
C126—C121—C122118.87 (18)C225—C224—C227120.1 (2)
C126—C121—P1117.34 (15)C226—C225—C224121.0 (2)
C122—C121—P1123.70 (15)C226—C225—H225119.5
C123—C122—C121120.1 (2)C224—C225—H225119.5
C123—C122—H122120C225—C226—C221121.07 (19)
C121—C122—H122120C225—C226—H226119.5
C124—C123—C122121.2 (2)C221—C226—H226119.5
C124—C123—H123119.4C224—C227—H22A109.5
C122—C123—H123119.4C224—C227—H22B109.5
C123—C124—C125118.55 (19)H22A—C227—H22B109.5
C123—C124—C127121.7 (2)C224—C227—H22C109.5
C125—C124—C127119.8 (2)H22A—C227—H22C109.5
C124—C125—C126120.8 (2)H22B—C227—H22C109.5
C124—C125—H125119.6C232—C231—C236118.39 (19)
C126—C125—H125119.6C232—C231—P2124.08 (16)
C125—C126—C121120.49 (19)C236—C231—P2117.53 (16)
C125—C126—H126119.8C233—C232—C231120.4 (2)
C121—C126—H126119.8C233—C232—H232119.8
C124—C127—H12A109.5C231—C232—H232119.8
C124—C127—H12B109.5C232—C233—C234121.4 (2)
H12A—C127—H12B109.5C232—C233—H233119.3
C124—C127—H12C109.5C234—C233—H233119.3
H12A—C127—H12C109.5C233—C234—C235118.0 (2)
H12B—C127—H12C109.5C233—C234—C237121.4 (2)
C132—C131—C136118.36 (19)C235—C234—C237120.6 (2)
C132—C131—P1122.71 (15)C236—C235—C234120.9 (2)
C136—C131—P1118.84 (15)C236—C235—H235119.5
C133—C132—C131120.69 (19)C234—C235—H235119.5
C133—C132—H132119.7C235—C236—C231120.9 (2)
C131—C132—H132119.7C235—C236—H236119.6
C132—C133—C134121.21 (19)C231—C236—H236119.6
C132—C133—H133119.4C234—C237—H23A109.5
C134—C133—H133119.4C234—C237—H23B109.5
C133—C134—C135118.0 (2)H23A—C237—H23B109.5
C133—C134—C137121.1 (2)C234—C237—H23C109.5
C135—C134—C137120.9 (2)H23A—C237—H23C109.5
C136—C135—C134121.3 (2)H23B—C237—H23C109.5
C136—C135—H135119.4C—N—Ag142.81 (16)
C134—C135—H135119.4C—S—Agi97.85 (7)
C135—C136—C131120.51 (19)N—Ag—P1115.23 (5)
C135—C136—H136119.7N—Ag—P291.90 (5)
C131—C136—H136119.7P1—Ag—P2119.826 (18)
C134—C137—H13A109.5N—Ag—Si105.61 (5)
C134—C137—H13B109.5P1—Ag—Si111.461 (18)
H13A—C137—H13B109.5P2—Ag—Si110.655 (19)
C134—C137—H13C109.5C111—P1—C121104.99 (9)
H13A—C137—H13C109.5C111—P1—C131105.85 (9)
H13B—C137—H13C109.5C121—P1—C131102.91 (9)
C212—C211—C216118.4 (2)C111—P1—Ag110.53 (6)
C212—C211—P2117.33 (17)C121—P1—Ag114.81 (7)
C216—C211—P2124.24 (18)C131—P1—Ag116.68 (7)
C211—C212—C213120.9 (2)C231—P2—C211103.99 (10)
C211—C212—H212119.5C231—P2—C221105.56 (9)
C213—C212—H212119.5C211—P2—C221102.21 (11)
C214—C213—C212121.2 (2)C231—P2—Ag111.11 (7)
C214—C213—H213119.4C211—P2—Ag117.23 (8)
C212—C213—H213119.4C221—P2—Ag115.42 (7)
C213—C214—C215117.99 (19)
C116—C111—C112—C1131.2 (3)P2—C231—C236—C235179.95 (16)
P1—C111—C112—C113−170.13 (16)C—N—Ag—P1175.2 (3)
C111—C112—C113—C1140.5 (3)C—N—Ag—P2−60.3 (3)
C112—C113—C114—C115−1.7 (3)C—N—Ag—Si51.7 (3)
C112—C113—C114—C117176.8 (2)C116—C111—P1—C121122.96 (17)
C113—C114—C115—C1161.4 (3)C112—C111—P1—C121−66.24 (17)
C117—C114—C115—C116−177.1 (2)C116—C111—P1—C13114.51 (19)
C114—C115—C116—C1110.3 (3)C112—C111—P1—C131−174.69 (15)
C112—C111—C116—C115−1.5 (3)C116—C111—P1—Ag−112.70 (16)
P1—C111—C116—C115169.17 (16)C112—C111—P1—Ag58.10 (16)
C126—C121—C122—C1231.3 (3)C126—C121—P1—C111160.41 (16)
P1—C121—C122—C123−175.01 (16)C122—C121—P1—C111−23.2 (2)
C121—C122—C123—C124−0.1 (3)C126—C121—P1—C131−89.01 (17)
C122—C123—C124—C125−1.1 (3)C122—C121—P1—C13187.39 (19)
C122—C123—C124—C127178.7 (2)C126—C121—P1—Ag38.83 (18)
C123—C124—C125—C1261.1 (3)C122—C121—P1—Ag−144.77 (16)
C127—C124—C125—C126−178.7 (2)C132—C131—P1—C11184.96 (19)
C124—C125—C126—C1210.1 (3)C136—C131—P1—C111−98.78 (17)
C122—C121—C126—C125−1.4 (3)C132—C131—P1—C121−25.0 (2)
P1—C121—C126—C125175.23 (17)C136—C131—P1—C121151.28 (17)
C136—C131—C132—C133−0.8 (3)C132—C131—P1—Ag−151.62 (15)
P1—C131—C132—C133175.47 (17)C136—C131—P1—Ag24.63 (19)
C131—C132—C133—C134−0.1 (3)N—Ag—P1—C111104.30 (9)
C132—C133—C134—C1351.4 (3)P2—Ag—P1—C111−3.90 (7)
C132—C133—C134—C137−177.3 (2)Si—Ag—P1—C111−135.37 (7)
C133—C134—C135—C136−2.0 (3)N—Ag—P1—C121−137.18 (9)
C137—C134—C135—C136176.7 (2)P2—Ag—P1—C121114.62 (7)
C134—C135—C136—C1311.1 (3)Si—Ag—P1—C121−16.86 (8)
C132—C131—C136—C1350.3 (3)N—Ag—P1—C131−16.66 (9)
P1—C131—C136—C135−176.14 (17)P2—Ag—P1—C131−124.87 (7)
C216—C211—C212—C213−3.8 (4)Si—Ag—P1—C131103.66 (7)
P2—C211—C212—C213175.1 (2)C232—C231—P2—C21184.7 (2)
C211—C212—C213—C2141.2 (4)C236—C231—P2—C211−95.14 (18)
C212—C213—C214—C2151.8 (4)C232—C231—P2—C221−22.5 (2)
C212—C213—C214—C217−177.5 (2)C236—C231—P2—C221157.67 (16)
C213—C214—C215—C216−2.2 (4)C232—C231—P2—Ag−148.33 (16)
C217—C214—C215—C216177.1 (2)C236—C231—P2—Ag31.86 (17)
C212—C211—C216—C2153.4 (4)C212—C211—P2—C231167.9 (2)
P2—C211—C216—C215−175.4 (2)C216—C211—P2—C231−13.3 (3)
C214—C215—C216—C211−0.4 (4)C212—C211—P2—C221−82.4 (2)
C226—C221—C222—C2231.0 (3)C216—C211—P2—C22196.4 (3)
P2—C221—C222—C223179.46 (17)C212—C211—P2—Ag44.8 (3)
C221—C222—C223—C224−0.2 (3)C216—C211—P2—Ag−136.4 (2)
C222—C223—C224—C225−0.4 (3)C226—C221—P2—C231−105.37 (17)
C222—C223—C224—C227179.2 (2)C222—C221—P2—C23176.19 (19)
C223—C224—C225—C2260.1 (3)C226—C221—P2—C211146.15 (17)
C227—C224—C225—C226−179.4 (2)C222—C221—P2—C211−32.3 (2)
C224—C225—C226—C2210.7 (3)C226—C221—P2—Ag17.74 (18)
C222—C221—C226—C225−1.2 (3)C222—C221—P2—Ag−160.69 (16)
P2—C221—C226—C225−179.76 (16)N—Ag—P2—C231−84.01 (8)
C236—C231—C232—C2330.6 (3)P1—Ag—P2—C23136.69 (7)
P2—C231—C232—C233−179.18 (16)Si—Ag—P2—C231168.51 (7)
C231—C232—C233—C234−1.1 (3)N—Ag—P2—C21135.34 (11)
C232—C233—C234—C2350.8 (3)P1—Ag—P2—C211156.04 (10)
C232—C233—C234—C237−179.3 (2)Si—Ag—P2—C211−72.14 (10)
C233—C234—C235—C2360.0 (3)N—Ag—P2—C221155.87 (9)
C237—C234—C235—C236−180.0 (2)P1—Ag—P2—C221−83.43 (7)
C234—C235—C236—C231−0.4 (3)Si—Ag—P2—C22148.39 (7)
C232—C231—C236—C2350.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg6 are the centroids of the C111–C116 and C231–C236 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C135—H135···Cg6ii0.952.863.772 (2)161
C225—H225···Cg1iii0.952.733.568 (2)147

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2658).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bowmaker, G. A., Effendy, Hart, R. D., Kildea, J. D., De Silva, E. N. & White, A. H. (1997). Aust. J. Chem.50, 627–640.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Effendy, Di Nicola, C., Fianchini, M., Pettinari, C., Skelton, B.W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 763–795.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mann, F. G., Wells, A. F. & Purdue, D. (1937). J. Chem. Soc. pp. 1828–1836.
  • Meijboom, R. (2006). Acta Cryst. E62, m2698–m2700.
  • Meijboom, R. (2007). Acta Cryst. E63, m78–m79.
  • Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev.253, 325–342.
  • Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191–m3193.
  • Meijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m2162–m2164.
  • Omondi, B. & Meijboom, R. (2010). Acta Cryst. B66, 69–75. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Venter, G. J. S., Meijboom, R. & Roodt, A. (2006). Acta Cryst. E62, m3453–m3455.
  • Venter, G. J. S., Meijboom, R. & Roodt, A. (2007). Acta Cryst. E63, m3076–m3077.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography