PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o884.
Published online 2010 March 20. doi:  10.1107/S1600536810009852
PMCID: PMC2984052

2,2,2-Tribromo-N-(2-methyl­phen­yl)acetamide

Abstract

The asymmetric unit of the title compound, C9H8Br3NO, contains two independent mol­ecules. Intra­molecular N—H(...)Br hydrogen bonds are present in both mol­ecules. In the crystal, mol­ecules are packed into columnar chains by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For preparation of the title compound, see: Gowda et al. (2003 [triangle]). For background to our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides and for related structures, see: Brown (1966 [triangle]); Gowda et al. (2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o884-scheme1.jpg

Experimental

Crystal data

  • C9H8Br3NO
  • M r = 385.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o884-efi1.jpg
  • a = 9.949 (2) Å
  • b = 21.429 (4) Å
  • c = 11.653 (2) Å
  • β = 107.69 (1)°
  • V = 2366.9 (8) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 12.40 mm−1
  • T = 299 K
  • 0.55 × 0.28 × 0.28 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.056, T max = 0.129
  • 5721 measured reflections
  • 4204 independent reflections
  • 3666 reflections with I > 2σ(I)
  • R int = 0.149
  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.212
  • S = 1.05
  • 4204 reflections
  • 260 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.77 e Å−3
  • Δρmin = −1.34 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009852/pk2229sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009852/pk2229Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of ring and the side chain substituents on the solid state structures of N-aromatic amides (Gowda et al., 2009, 2010), the structure of 2,2,2-tribromo-N-(2-methylphenyl)acetamide has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules. The conformation of the N—H bond in the structure is anti to the C=O bond in the side chain, similar to that observed in 2,2,2-tribromo-N-(phenyl)acetamide, 2,2,2-tribromo-N-(2-chlorophenyl)acetamide (Gowda et al., 2010), 2,2,2-tribromo-N-(3-methylphenyl)acetamide (Gowda et al., 2009) and other amides (Brown, 1966). The structure of the title compound shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. A packing diagram of molecules showing the hydrogen bonds N1—H1N···O2 and N2—H2N···O1 (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Experimental

The title compound was prepared from o-toluidine, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The largest residual electron-density features are located in the region of Br5 and Br6. The highest peak is 0.84 Å from Br5 and the deepest hole is 0.82 Å from Br6.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radius.
Fig. 2.
Molecular packing in the structure of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

C9H8Br3NOF(000) = 1456
Mr = 385.89Dx = 2.166 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.949 (2) Åθ = 4.1–18.8°
b = 21.429 (4) ŵ = 12.40 mm1
c = 11.653 (2) ÅT = 299 K
β = 107.69 (1)°Rod, colourless
V = 2366.9 (8) Å30.55 × 0.28 × 0.28 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer3666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.149
graphiteθmax = 67.0°, θmin = 4.1°
ω/2θ scansh = −11→3
Absorption correction: ψ scan (North et al., 1968)k = −25→0
Tmin = 0.056, Tmax = 0.129l = −13→13
5721 measured reflections3 standard reflections every 120 min
4204 independent reflections intensity decay: 1.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212w = 1/[σ2(Fo2) + (0.1206P)2 + 14.5272P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4204 reflectionsΔρmax = 1.77 e Å3
260 parametersΔρmin = −1.33 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00203 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0153 (8)0.3501 (4)0.6789 (7)0.0360 (16)
C20.0276 (9)0.3149 (4)0.7841 (7)0.0428 (18)
C30.0010 (11)0.2519 (5)0.7730 (10)0.059 (2)
H30.02860.22720.84180.071*
C4−0.0656 (12)0.2238 (5)0.6631 (12)0.063 (3)
H4−0.08110.18090.65870.076*
C5−0.1078 (11)0.2593 (5)0.5620 (11)0.061 (3)
H5−0.15350.24100.48810.073*
C6−0.0822 (9)0.3234 (4)0.5694 (8)0.0453 (19)
H6−0.11040.34800.50040.054*
C7−0.0894 (7)0.4574 (3)0.6711 (7)0.0335 (15)
C8−0.0422 (8)0.5264 (4)0.6954 (6)0.0356 (15)
C90.0957 (12)0.3450 (6)0.9028 (9)0.065 (3)
H9A0.03170.37470.91960.078*
H9B0.18000.36610.90060.078*
H9C0.11910.31380.96470.078*
N10.0124 (6)0.4153 (3)0.6855 (6)0.0369 (14)
H1N0.095 (5)0.429 (4)0.700 (9)0.044*
O1−0.2153 (6)0.4451 (3)0.6442 (7)0.0537 (16)
Br10.14164 (9)0.54417 (4)0.68400 (10)0.0519 (3)
Br2−0.04344 (14)0.54241 (6)0.85827 (9)0.0703 (4)
Br3−0.17695 (10)0.57952 (5)0.58669 (10)0.0581 (4)
C100.5167 (7)0.4983 (4)0.7302 (7)0.0350 (15)
C110.5752 (9)0.5236 (4)0.8425 (8)0.0464 (19)
C120.5630 (12)0.5873 (6)0.8526 (11)0.068 (3)
H120.60000.60590.92770.082*
C130.4978 (12)0.6242 (5)0.7546 (13)0.069 (3)
H130.49130.66710.76360.082*
C140.4424 (10)0.5969 (5)0.6435 (11)0.059 (3)
H140.39860.62150.57690.070*
C150.4512 (9)0.5338 (4)0.6306 (8)0.0439 (18)
H150.41360.51520.55550.053*
C160.4364 (7)0.3930 (3)0.7382 (7)0.0338 (15)
C170.4640 (7)0.3218 (4)0.7325 (7)0.0354 (16)
C180.6471 (13)0.4835 (7)0.9492 (10)0.075 (3)
H18A0.72430.46160.93410.090*
H18B0.58090.45390.96240.090*
H18C0.68220.50931.01940.090*
N20.5275 (7)0.4317 (3)0.7144 (6)0.0370 (14)
H2N0.591 (8)0.416 (4)0.689 (8)0.044*
O20.3318 (7)0.4088 (3)0.7643 (7)0.0539 (16)
Br40.48061 (16)0.28822 (6)0.88797 (10)0.0740 (4)
Br50.63133 (11)0.30070 (5)0.68942 (12)0.0628 (4)
Br60.30461 (11)0.28588 (5)0.61417 (12)0.0677 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.033 (3)0.036 (4)0.042 (4)0.005 (3)0.016 (3)0.006 (3)
C20.046 (4)0.045 (5)0.044 (4)0.005 (4)0.024 (3)0.004 (3)
C30.070 (6)0.045 (5)0.072 (7)0.013 (5)0.034 (5)0.019 (5)
C40.079 (7)0.028 (5)0.096 (8)−0.001 (4)0.046 (6)−0.004 (5)
C50.064 (6)0.043 (5)0.079 (7)−0.008 (4)0.029 (5)−0.022 (5)
C60.049 (4)0.046 (5)0.040 (4)0.006 (4)0.013 (3)0.004 (3)
C70.035 (4)0.027 (4)0.041 (4)−0.002 (3)0.015 (3)0.007 (3)
C80.038 (4)0.040 (4)0.032 (3)0.001 (3)0.015 (3)0.000 (3)
C90.069 (6)0.078 (8)0.043 (5)−0.004 (6)0.010 (4)0.010 (5)
N10.026 (3)0.039 (4)0.044 (4)−0.002 (3)0.008 (2)0.008 (3)
O10.038 (3)0.036 (3)0.087 (5)0.002 (2)0.019 (3)0.004 (3)
Br10.0403 (5)0.0394 (6)0.0790 (7)−0.0034 (3)0.0227 (4)0.0118 (4)
Br20.1006 (9)0.0767 (8)0.0412 (6)−0.0170 (6)0.0330 (5)−0.0102 (5)
Br30.0506 (5)0.0381 (6)0.0706 (7)0.0069 (4)−0.0041 (4)0.0126 (4)
C100.032 (3)0.030 (4)0.045 (4)−0.005 (3)0.015 (3)0.000 (3)
C110.041 (4)0.045 (5)0.052 (5)−0.006 (4)0.011 (3)−0.005 (4)
C120.070 (6)0.060 (7)0.071 (7)−0.017 (5)0.014 (5)−0.035 (5)
C130.068 (6)0.029 (5)0.107 (9)−0.008 (4)0.025 (6)−0.006 (5)
C140.055 (5)0.037 (5)0.085 (7)0.008 (4)0.023 (5)0.019 (5)
C150.044 (4)0.040 (5)0.047 (4)−0.004 (3)0.015 (3)0.001 (3)
C160.033 (3)0.027 (4)0.042 (4)0.009 (3)0.012 (3)0.001 (3)
C170.030 (3)0.027 (4)0.049 (4)0.002 (3)0.012 (3)0.003 (3)
C180.074 (7)0.090 (9)0.046 (5)−0.002 (6)−0.003 (5)0.006 (5)
N20.041 (3)0.023 (3)0.053 (4)0.005 (3)0.023 (3)0.001 (3)
O20.049 (3)0.031 (3)0.091 (5)0.003 (3)0.036 (3)0.000 (3)
Br40.1248 (11)0.0556 (7)0.0497 (6)0.0301 (6)0.0387 (6)0.0187 (5)
Br50.0549 (6)0.0364 (6)0.1123 (9)0.0086 (4)0.0482 (6)−0.0001 (5)
Br60.0544 (6)0.0506 (7)0.0818 (8)0.0001 (4)−0.0036 (5)−0.0176 (5)

Geometric parameters (Å, °)

C1—C61.371 (12)C10—C111.372 (12)
C1—C21.391 (11)C10—C151.375 (12)
C1—N11.423 (11)C10—N21.446 (10)
C2—C31.374 (14)C11—C121.377 (15)
C2—C91.490 (14)C11—C181.503 (14)
C3—C41.389 (17)C12—C131.378 (18)
C3—H30.9300C12—H120.9300
C4—C51.358 (17)C13—C141.374 (17)
C4—H40.9300C13—H130.9300
C5—C61.396 (14)C14—C151.366 (13)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—O11.224 (9)C16—O21.217 (9)
C7—N11.329 (10)C16—N21.320 (10)
C7—C81.552 (11)C16—C171.554 (10)
C8—Br11.912 (7)C17—Br41.910 (8)
C8—Br31.914 (8)C17—Br61.918 (8)
C8—Br21.932 (7)C17—Br51.933 (7)
C9—H9A0.9600C18—H18A0.9600
C9—H9B0.9600C18—H18B0.9600
C9—H9C0.9600C18—H18C0.9600
N1—H1N0.84 (4)N2—H2N0.85 (4)
C6—C1—C2121.8 (8)C11—C10—C15122.7 (8)
C6—C1—N1119.4 (7)C11—C10—N2119.0 (7)
C2—C1—N1118.8 (7)C15—C10—N2118.3 (7)
C3—C2—C1116.8 (8)C10—C11—C12116.8 (9)
C3—C2—C9122.2 (9)C10—C11—C18121.3 (9)
C1—C2—C9121.0 (9)C12—C11—C18121.9 (10)
C2—C3—C4122.5 (9)C11—C12—C13121.9 (10)
C2—C3—H3118.7C11—C12—H12119.0
C4—C3—H3118.7C13—C12—H12119.0
C5—C4—C3119.5 (9)C14—C13—C12119.3 (9)
C5—C4—H4120.3C14—C13—H13120.4
C3—C4—H4120.3C12—C13—H13120.4
C4—C5—C6119.7 (10)C15—C14—C13120.3 (10)
C4—C5—H5120.1C15—C14—H14119.9
C6—C5—H5120.1C13—C14—H14119.9
C1—C6—C5119.7 (9)C14—C15—C10119.0 (9)
C1—C6—H6120.2C14—C15—H15120.5
C5—C6—H6120.2C10—C15—H15120.5
O1—C7—N1124.6 (7)O2—C16—N2124.8 (7)
O1—C7—C8118.8 (7)O2—C16—C17117.4 (7)
N1—C7—C8116.5 (6)N2—C16—C17117.8 (6)
C7—C8—Br1114.8 (5)C16—C17—Br4107.1 (5)
C7—C8—Br3109.5 (5)C16—C17—Br6107.8 (5)
Br1—C8—Br3109.2 (4)Br4—C17—Br6110.2 (4)
C7—C8—Br2104.8 (5)C16—C17—Br5114.7 (5)
Br1—C8—Br2109.0 (4)Br4—C17—Br5109.0 (4)
Br3—C8—Br2109.4 (4)Br6—C17—Br5108.0 (4)
C2—C9—H9A109.5C11—C18—H18A109.5
C2—C9—H9B109.5C11—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C2—C9—H9C109.5C11—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—C1122.2 (6)C16—N2—C10120.8 (6)
C7—N1—H1N117 (7)C16—N2—H2N117 (7)
C1—N1—H1N120 (7)C10—N2—H2N122 (7)
C6—C1—C2—C30.6 (12)C15—C10—C11—C121.4 (12)
N1—C1—C2—C3−178.8 (7)N2—C10—C11—C12179.5 (8)
C6—C1—C2—C9−177.9 (8)C15—C10—C11—C18−179.4 (9)
N1—C1—C2—C92.7 (11)N2—C10—C11—C18−1.3 (12)
C1—C2—C3—C4−0.1 (14)C10—C11—C12—C13−1.2 (15)
C9—C2—C3—C4178.4 (9)C18—C11—C12—C13179.7 (11)
C2—C3—C4—C5−0.6 (16)C11—C12—C13—C140.3 (17)
C3—C4—C5—C60.8 (15)C12—C13—C14—C150.4 (16)
C2—C1—C6—C5−0.4 (12)C13—C14—C15—C10−0.2 (14)
N1—C1—C6—C5179.0 (8)C11—C10—C15—C14−0.7 (12)
C4—C5—C6—C1−0.3 (14)N2—C10—C15—C14−178.9 (7)
O1—C7—C8—Br1−160.3 (6)O2—C16—C17—Br4−59.3 (8)
N1—C7—C8—Br121.9 (8)N2—C16—C17—Br4120.7 (6)
O1—C7—C8—Br3−37.2 (9)O2—C16—C17—Br659.3 (8)
N1—C7—C8—Br3145.1 (6)N2—C16—C17—Br6−120.7 (6)
O1—C7—C8—Br280.1 (8)O2—C16—C17—Br5179.6 (6)
N1—C7—C8—Br2−97.6 (6)N2—C16—C17—Br5−0.3 (9)
O1—C7—N1—C1−4.5 (12)O2—C16—N2—C106.5 (12)
C8—C7—N1—C1173.0 (6)C17—C16—N2—C10−173.5 (7)
C6—C1—N1—C771.7 (10)C11—C10—N2—C1683.9 (9)
C2—C1—N1—C7−108.9 (8)C15—C10—N2—C16−97.9 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.84 (4)2.28 (6)3.031 (8)149 (9)
N1—H1N···Br10.84 (4)2.53 (9)3.048 (7)120 (8)
N2—H2N···O1i0.85 (4)2.23 (7)2.928 (9)139 (9)
N2—H2N···Br50.85 (4)2.50 (9)3.036 (6)122 (8)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2229).

References

  • Brown, C. J. (1966). Acta Cryst.21, 442–445.
  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o386. [PMC free article] [PubMed]
  • Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography