PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o906–o907.
Published online 2010 March 24. doi:  10.1107/S1600536810009979
PMCID: PMC2984046

10-Methyl-9-phenoxy­carbonyl­acridinium trifluoro­methane­sulfonate monohydrate

Abstract

In the crystal structure of the title compound, C21H16NO2 +·CF3SO3 ·H2O, the anions and the water mol­ecules are linked by O—H(...)O inter­actions, while the cations form inversion dimers through π–π inter­actions between acridine ring systems. These dimers are linked by C—H(...)O and C—F(...)π inter­actions to adjacent anions, and by C—H(...)π inter­actions to neighboring cations. The water mol­ecule links two H atoms of the cation by C—H(...)O inter­actions and two adjacent anions by O—H(...)O inter­actions. The acridine and benzene ring systems are oriented at 15.6 (1)°. The carboxyl group is twisted at an angle of 77.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine units are either parallel or inclined at an angle of 18.4 (1)°.

Related literature

For background to the chemiluminogenic properties of 9-phenoxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­sulf­on­ates, see: Brown et al. (2009 [triangle]); Rak et al. (1999 [triangle]); Roda et al. (2003 [triangle]); Zomer & Jacquemijns (2001 [triangle]). For related structures, see: Sikorski et al. (2007 [triangle]); Trzybiński et al. (2009 [triangle]). For inter­molecular inter­actions, see: Bianchi et al. (2004 [triangle]); Dorn et al. (2005 [triangle]); Hunter et al. (2001 [triangle]); Novoa et al. (2006 [triangle]); Takahashi et al. (2001 [triangle]). For the synthesis, see: Sato (1996 [triangle]); Trzybiński et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o906-scheme1.jpg

Experimental

Crystal data

  • C21H16NO2 +·CF3SO3 ·H2O
  • M r = 481.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o906-efi2.jpg
  • a = 11.3807 (4) Å
  • b = 9.5785 (2) Å
  • c = 19.7134 (6) Å
  • β = 98.172 (3)°
  • V = 2127.14 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 295 K
  • 0.78 × 0.16 × 0.10 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]). T min = 0.741, T max = 1.000
  • 46462 measured reflections
  • 3792 independent reflections
  • 2422 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.211
  • S = 1.03
  • 3792 reflections
  • 305 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
C—F(...)π inter­actions (Å, °)
Table 3
π–π inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009979/ng2742sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009979/ng2742Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

The crystal structures of six 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates can be found in the Cambridge Structural Database. All of them were determined in our laboratory and concern derivatives substituted in the phenyl fragment. For a long time we were unable to obtain crystals of the parent compound, i.e. unsubstituted 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonate, suitable for X-Ray investigations. Eventually we succeeded, and we present here the crystal structure of the monohydrate of this compound. The reason for our interest in this group of compounds is their chemiluminogenic properties, which means they can be used as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are rouitenely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The cations of the above mentioned salts undergo oxidation with hydrogen peroxide in alkaline media; at the same time the phenoxycarbonyl fragment is removed and the remainder of the molecule is converted to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). This forms the basis for analytical applications (Zomer & Jacquemijns, 2001).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007; Trzybiński et al., 2009). With respective average deviations from planarity of 0.0292 (3) Å and 0.0016 (3) Å, the acridine and benzene ring systems are oriented at 15.6 (1)°. The carboxyl group is twisted at an angle of 77.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle of 0.0 (1)°) or inclined at an angle of 18.4 (1)° in the lattice.

In the crystal structure, the anions form hydrates with water molecules through O–H···O interactions, while the inversely oriented cations form dimers through π–π interactions involving acridine moieties (Tables 1 and 3, Figs. 1 and 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The water molecule links two sites of the cation by C–H···O interactions and two adjacent anions by O–H···O interactions (Table 1, Figs. 1 and 2). The O–H···O and C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

The compound was synthesized following a procedure described elsewhere (Trzybiński et al., 2009). 9-(Chlorocarbonyl)-acridine was prepared by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. The compound obtained was esterified with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h). The product – phenyl acridine-9-carboxylate – was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v) and quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (under an Ar atmosphere at room temperature for 3h) (Sato, 1996). The crude 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from ethanol/H2O, 4/1 v/v, solution (m.p. 263-265K).

Refinement

The H-atoms of the water molecule were located on a Fourier-difference map, restrained by DFIX command 0.85 for O–H distances and by DFIX 1.39 for H···H distance and refined as riding with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic H atoms and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids. The ...
Fig. 2.
The arrangement of the ions in the crystal structure. The O–H···O and C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π ...

Crystal data

C21H16NO2+·CF3SO3·H2OF(000) = 992
Mr = 481.44Dx = 1.503 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15973 reflections
a = 11.3807 (4) Åθ = 3.0–29.3°
b = 9.5785 (2) ŵ = 0.22 mm1
c = 19.7134 (6) ÅT = 295 K
β = 98.172 (3)°Needle, yellow
V = 2127.14 (11) Å30.78 × 0.16 × 0.10 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer3792 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2422 reflections with I > 2σ(I)
graphiteRint = 0.060
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = −13→13
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008).k = −11→11
Tmin = 0.741, Tmax = 1.000l = −23→23
46462 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.146P)2] where P = (Fo2 + 2Fc2)/3
3792 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6362 (3)0.0857 (3)0.60005 (15)0.0534 (7)
H10.63280.18160.60670.064*
C20.7417 (3)0.0248 (3)0.59672 (17)0.0647 (8)
H20.81030.07880.59990.078*
C30.7481 (3)−0.1205 (4)0.58836 (19)0.0703 (9)
H30.8218−0.16200.58770.084*
C40.6494 (3)−0.2020 (3)0.58122 (16)0.0613 (8)
H40.6561−0.29790.57530.074*
C50.2201 (3)−0.2410 (3)0.56540 (18)0.0700 (10)
H50.2234−0.33630.55670.084*
C60.1149 (4)−0.1788 (4)0.5680 (2)0.0859 (12)
H60.0464−0.23320.56150.103*
C70.1041 (3)−0.0366 (4)0.5799 (2)0.0822 (11)
H70.02960.00290.58050.099*
C80.2025 (3)0.0440 (3)0.59056 (17)0.0637 (9)
H80.19540.13890.59910.076*
C90.4195 (3)0.0648 (2)0.59775 (13)0.0450 (7)
N100.4351 (2)−0.2193 (2)0.57446 (11)0.0476 (6)
C110.5304 (3)0.0064 (3)0.59353 (12)0.0439 (7)
C120.5374 (3)−0.1418 (3)0.58269 (13)0.0468 (7)
C130.3168 (3)−0.0151 (3)0.58886 (14)0.0493 (7)
C140.3255 (3)−0.1614 (3)0.57599 (14)0.0506 (7)
C150.4143 (2)0.2199 (3)0.61254 (14)0.0454 (7)
O160.4005 (2)0.24024 (17)0.67778 (10)0.0597 (6)
O170.4242 (2)0.30844 (19)0.57195 (10)0.0647 (6)
C180.4040 (3)0.3808 (3)0.70187 (14)0.0523 (8)
C190.3003 (3)0.4502 (3)0.70065 (17)0.0635 (9)
H190.22860.40800.68360.076*
C200.3034 (4)0.5869 (4)0.7257 (2)0.0763 (11)
H200.23350.63750.72520.092*
C210.4108 (4)0.6459 (4)0.7509 (2)0.0797 (11)
H210.41340.73660.76790.096*
C220.5133 (4)0.5729 (4)0.7514 (2)0.0815 (11)
H220.58550.61420.76830.098*
C230.5108 (3)0.4375 (3)0.72675 (17)0.0669 (9)
H230.58050.38660.72720.080*
C240.4419 (3)−0.3729 (3)0.56256 (17)0.0637 (9)
H24A0.3966−0.42130.59280.095*
H24B0.5232−0.40260.57140.095*
H24C0.4102−0.39370.51590.095*
O250.1330 (4)0.3806 (6)0.5581 (2)0.1480 (15)
H25A0.136 (7)0.397 (9)0.5162 (16)0.222*
H25B0.064 (4)0.350 (10)0.563 (4)0.222*
S260.15677 (9)0.55386 (9)0.38344 (5)0.0715 (4)
O270.1121 (4)0.4342 (3)0.41645 (19)0.1242 (12)
O280.0899 (3)0.6777 (3)0.38719 (15)0.0997 (9)
O290.2829 (3)0.5641 (3)0.39743 (18)0.1067 (10)
C300.1269 (4)0.5037 (5)0.2942 (2)0.0903 (12)
F310.1687 (3)0.6041 (3)0.25626 (16)0.1375 (12)
F320.0152 (3)0.4950 (4)0.27144 (17)0.1380 (12)
F330.1787 (3)0.3873 (3)0.28194 (15)0.1227 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.065 (2)0.0385 (14)0.0567 (17)−0.0056 (13)0.0088 (14)−0.0035 (12)
C20.061 (2)0.0628 (19)0.071 (2)−0.0063 (16)0.0092 (16)−0.0077 (15)
C30.067 (2)0.068 (2)0.076 (2)0.0102 (18)0.0113 (17)−0.0048 (17)
C40.078 (2)0.0434 (16)0.063 (2)0.0136 (15)0.0108 (16)−0.0023 (13)
C50.082 (3)0.0491 (17)0.078 (2)−0.0199 (17)0.0084 (18)−0.0067 (15)
C60.063 (3)0.082 (3)0.111 (3)−0.027 (2)0.008 (2)−0.018 (2)
C70.056 (2)0.086 (3)0.104 (3)−0.0065 (19)0.011 (2)−0.019 (2)
C80.064 (2)0.0529 (17)0.074 (2)−0.0019 (15)0.0097 (17)−0.0084 (14)
C90.0643 (19)0.0295 (13)0.0413 (14)−0.0039 (12)0.0074 (13)−0.0014 (10)
N100.0708 (17)0.0262 (10)0.0461 (13)−0.0039 (10)0.0091 (11)−0.0018 (8)
C110.0603 (18)0.0320 (13)0.0392 (14)−0.0017 (12)0.0065 (12)−0.0017 (10)
C120.0670 (19)0.0334 (13)0.0398 (14)0.0012 (13)0.0072 (13)0.0018 (10)
C130.0632 (19)0.0371 (14)0.0469 (15)−0.0020 (13)0.0058 (13)−0.0028 (11)
C140.066 (2)0.0377 (14)0.0481 (16)−0.0117 (13)0.0071 (13)−0.0022 (11)
C150.0543 (18)0.0311 (13)0.0505 (17)−0.0011 (11)0.0071 (13)−0.0024 (12)
O160.0985 (17)0.0294 (9)0.0546 (13)−0.0024 (9)0.0226 (11)−0.0024 (8)
O170.1108 (19)0.0318 (10)0.0544 (12)−0.0024 (10)0.0214 (12)0.0035 (9)
C180.082 (2)0.0329 (14)0.0457 (15)−0.0025 (14)0.0201 (15)−0.0031 (11)
C190.072 (2)0.0525 (18)0.069 (2)−0.0098 (16)0.0234 (17)−0.0085 (14)
C200.090 (3)0.0555 (19)0.091 (3)0.0138 (18)0.039 (2)−0.0100 (17)
C210.111 (3)0.0485 (18)0.083 (3)−0.011 (2)0.026 (2)−0.0207 (17)
C220.099 (3)0.064 (2)0.080 (3)−0.017 (2)0.010 (2)−0.0235 (18)
C230.077 (2)0.0539 (18)0.069 (2)0.0022 (16)0.0076 (17)−0.0084 (15)
C240.096 (2)0.0253 (13)0.072 (2)−0.0041 (14)0.0191 (17)−0.0056 (12)
O250.121 (3)0.191 (4)0.130 (3)0.034 (3)0.009 (2)0.014 (3)
S260.0867 (8)0.0584 (5)0.0688 (6)−0.0088 (4)0.0084 (5)−0.0088 (4)
O270.174 (3)0.092 (2)0.118 (3)−0.020 (2)0.058 (2)0.0251 (17)
O280.133 (3)0.0679 (16)0.098 (2)0.0144 (16)0.0154 (17)−0.0183 (14)
O290.090 (2)0.100 (2)0.119 (2)−0.0072 (16)−0.0236 (17)−0.0098 (17)
C300.094 (3)0.081 (3)0.092 (3)0.014 (2)0.001 (2)−0.019 (2)
F310.192 (3)0.131 (2)0.0935 (19)0.021 (2)0.034 (2)0.0265 (16)
F320.105 (2)0.155 (3)0.138 (2)0.0063 (18)−0.0372 (18)−0.058 (2)
F330.161 (3)0.0951 (18)0.110 (2)0.0314 (17)0.0119 (17)−0.0364 (14)

Geometric parameters (Å, °)

C1—C21.345 (4)C15—O171.182 (3)
C1—C111.414 (4)C15—O161.332 (3)
C1—H10.9300O16—C181.426 (3)
C2—C31.405 (5)C18—C191.352 (5)
C2—H20.9300C18—C231.357 (5)
C3—C41.358 (5)C19—C201.398 (5)
C3—H30.9300C19—H190.9300
C4—C121.404 (4)C20—C211.374 (6)
C4—H40.9300C20—H200.9300
C5—C61.345 (5)C21—C221.358 (6)
C5—C141.412 (4)C21—H210.9300
C5—H50.9300C22—C231.384 (5)
C6—C71.391 (5)C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.351 (5)C24—H24A0.9600
C7—H70.9300C24—H24B0.9600
C8—C131.424 (4)C24—H24C0.9600
C8—H80.9300O25—H25A0.85 (2)
C9—C131.387 (4)O25—H25B0.85 (2)
C9—C111.393 (4)S26—O281.417 (3)
C9—C151.517 (3)S26—O291.426 (3)
N10—C141.369 (4)S26—O271.445 (3)
N10—C121.371 (4)S26—C301.809 (5)
N10—C241.494 (3)C30—F321.290 (5)
C11—C121.439 (4)C30—F331.299 (5)
C13—C141.430 (4)C30—F311.346 (5)
C2—C1—C11121.2 (3)O17—C15—O16125.8 (2)
C2—C1—H1119.4O17—C15—C9124.2 (2)
C11—C1—H1119.4O16—C15—C9110.0 (2)
C1—C2—C3119.8 (3)C15—O16—C18117.2 (2)
C1—C2—H2120.1C19—C18—C23123.0 (3)
C3—C2—H2120.1C19—C18—O16118.4 (3)
C4—C3—C2121.8 (3)C23—C18—O16118.6 (3)
C4—C3—H3119.1C18—C19—C20118.4 (3)
C2—C3—H3119.1C18—C19—H19120.8
C3—C4—C12120.1 (3)C20—C19—H19120.8
C3—C4—H4120.0C21—C20—C19119.3 (3)
C12—C4—H4120.0C21—C20—H20120.3
C6—C5—C14119.8 (3)C19—C20—H20120.3
C6—C5—H5120.1C22—C21—C20120.6 (3)
C14—C5—H5120.1C22—C21—H21119.7
C5—C6—C7122.7 (3)C20—C21—H21119.7
C5—C6—H6118.6C21—C22—C23120.3 (4)
C7—C6—H6118.6C21—C22—H22119.8
C8—C7—C6119.7 (4)C23—C22—H22119.8
C8—C7—H7120.2C18—C23—C22118.3 (4)
C6—C7—H7120.2C18—C23—H23120.8
C7—C8—C13120.6 (3)C22—C23—H23120.8
C7—C8—H8119.7N10—C24—H24A109.5
C13—C8—H8119.7N10—C24—H24B109.5
C13—C9—C11121.7 (2)H24A—C24—H24B109.5
C13—C9—C15120.6 (3)N10—C24—H24C109.5
C11—C9—C15117.7 (2)H24A—C24—H24C109.5
C14—N10—C12122.6 (2)H24B—C24—H24C109.5
C14—N10—C24118.1 (2)H25A—O25—H25B110 (3)
C12—N10—C24119.3 (2)O28—S26—O29117.75 (19)
C9—C11—C1123.1 (2)O28—S26—O27114.5 (2)
C9—C11—C12118.3 (2)O29—S26—O27112.1 (2)
C1—C11—C12118.6 (3)O28—S26—C30104.19 (19)
N10—C12—C4122.2 (2)O29—S26—C30104.5 (2)
N10—C12—C11119.2 (3)O27—S26—C30101.4 (2)
C4—C12—C11118.6 (3)F32—C30—F33109.3 (4)
C9—C13—C8122.3 (2)F32—C30—F31105.2 (4)
C9—C13—C14119.0 (3)F33—C30—F31107.7 (4)
C8—C13—C14118.7 (3)F32—C30—S26113.3 (3)
N10—C14—C5122.4 (3)F33—C30—S26112.4 (3)
N10—C14—C13119.2 (2)F31—C30—S26108.6 (3)
C5—C14—C13118.5 (3)
C11—C1—C2—C3−1.6 (5)C6—C5—C14—N10179.5 (3)
C1—C2—C3—C42.2 (5)C6—C5—C14—C13−0.4 (5)
C2—C3—C4—C12−0.6 (5)C9—C13—C14—N101.6 (4)
C14—C5—C6—C70.9 (6)C8—C13—C14—N10−179.8 (3)
C5—C6—C7—C8−1.1 (7)C9—C13—C14—C5−178.5 (3)
C6—C7—C8—C130.8 (6)C8—C13—C14—C50.1 (4)
C13—C9—C11—C1177.8 (3)C13—C9—C15—O17−104.9 (4)
C15—C9—C11—C1−2.2 (4)C11—C9—C15—O1775.1 (4)
C13—C9—C11—C12−2.8 (4)C13—C9—C15—O1676.8 (3)
C15—C9—C11—C12177.2 (2)C11—C9—C15—O16−103.2 (3)
C2—C1—C11—C9178.9 (3)O17—C15—O16—C18−3.4 (4)
C2—C1—C11—C12−0.4 (4)C9—C15—O16—C18174.8 (2)
C14—N10—C12—C4179.8 (3)C15—O16—C18—C1994.4 (3)
C24—N10—C12—C4−0.8 (4)C15—O16—C18—C23−87.5 (3)
C14—N10—C12—C110.1 (4)C23—C18—C19—C200.5 (5)
C24—N10—C12—C11179.5 (2)O16—C18—C19—C20178.6 (3)
C3—C4—C12—N10178.8 (3)C18—C19—C20—C21−0.4 (5)
C3—C4—C12—C11−1.5 (4)C19—C20—C21—C220.4 (6)
C9—C11—C12—N102.3 (3)C20—C21—C22—C23−0.4 (6)
C1—C11—C12—N10−178.3 (2)C19—C18—C23—C22−0.6 (5)
C9—C11—C12—C4−177.4 (2)O16—C18—C23—C22−178.7 (3)
C1—C11—C12—C42.0 (4)C21—C22—C23—C180.5 (6)
C11—C9—C13—C8−177.7 (3)O28—S26—C30—F32−53.1 (4)
C15—C9—C13—C82.3 (4)O29—S26—C30—F32−177.2 (3)
C11—C9—C13—C140.9 (4)O27—S26—C30—F3266.1 (4)
C15—C9—C13—C14−179.1 (2)O28—S26—C30—F33−177.6 (3)
C7—C8—C13—C9178.3 (3)O29—S26—C30—F3358.2 (4)
C7—C8—C13—C14−0.3 (5)O27—S26—C30—F33−58.5 (4)
C12—N10—C14—C5178.0 (3)O28—S26—C30—F3163.3 (4)
C24—N10—C14—C5−1.3 (4)O29—S26—C30—F31−60.8 (3)
C12—N10—C14—C13−2.1 (4)O27—S26—C30—F31−177.5 (3)
C24—N10—C14—C13178.6 (2)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.593.424 (4)149
C8—H8···O250.932.523.360 (6)150
C19—H19···O250.932.573.232 (5)129
C24—H24A···Cg4ii0.962.693.484 (4)140
C24—H24C···O29ii0.962.603.544 (5)168
O25—H25A···O270.85 (4)1.98 (3)2.816 (5)170 (8)
O25—H25B···O28iii0.86 (4)2.14 (6)2.948 (6)156 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y+1, −z+1.

Table 2 C—F···π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.

XI···JI···JX···JXI···J
C30—F31···Cg2iv3.269 (3)4.075 (4)117.8 (2)
C30—F32···Cg1iv3.744 (3)4.463 (4)116.1 (3)

Symmetry code: (iv) x-1/2, -y+1/2, z-1/2.

Table 3 π–π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I.

IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12v3.682 (2)1.92 (1)3.568 (1)0.909 (1)
21v3.682 (2)1.92 (1)3.591 (1)0.814 (1)

Symmetry code: (v) -x+1, -y, -z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2742).

References

  • Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [PubMed]
  • Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem.7, 386–394. [PubMed]
  • Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  • Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [PubMed]
  • Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.75, 462–470. [PubMed]
  • Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  • Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771. [PMC free article] [PubMed]
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography