PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o866.
Published online 2010 March 20. doi:  10.1107/S1600536810009384
PMCID: PMC2984044

N-Butyl-4-methyl-6-phenyl­pyrimidin-2-amine

Abstract

In the title compound, C15H19N3, the pyrimidine ring is approximately planar [maximum deviation = 0.007 (1) Å] and forms a dihedral angle of 3.15 (6)° with the benzene ring. In the crystal packing, inter­molecular N—H(...)N hydrogen bonds link pairs of neighbouring mol­ecules into dimers with R 2 2(8) ring motifs. These dimers are stacked along the b axis.

Related literature

For the biological importance of substituted amino pyrimidines, see: Katrizky (1982 [triangle]); Brown & Lyall (1964 [triangle]); Jonckers et al. (2001 [triangle]). For their synthesis by microwave processes, see: Goswami et al. (2009 [triangle]). For a related structure, see: Fun et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o866-scheme1.jpg

Experimental

Crystal data

  • C15H19N3
  • M r = 241.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o866-efi2.jpg
  • a = 13.4828 (9) Å
  • b = 5.1618 (3) Å
  • c = 22.8462 (11) Å
  • β = 123.863 (3)°
  • V = 1320.29 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.30 × 0.23 × 0.08 mm

Data collection

  • Bruker SMART APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.978, T max = 0.994
  • 13801 measured reflections
  • 3829 independent reflections
  • 3085 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.170
  • S = 1.15
  • 3829 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009384/sj2745sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009384/sj2745Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian government and USM for the award of Research Fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/ EMR-II], Government of India, for financial support. AH thanks the CSIR, Government of India, for a Research Fellowship.

supplementary crystallographic information

Comment

Substituted amino pyrimidines are highly biologically important molecules (Katrizky, 1982; Brown & Lyall, 1964; Jonckers et al., 2001). Recently we have synthesized various substituted amino pyrimidines by microwave process (Goswami et al., 2009). Here we report the crystal structure of 2-butylamino-4-methyl-6-phenylpyrimidine.

In the title compound (Fig. 1), the pyrimidine ring (C1/N2/C2/C3/C4/N1) is approximately planar with a maximum deviation of 0.007 (1) Å at atom N2 and forms a dihedral angle of 3.15 (6)° with the benzene ring (C5–C10). The bond lengths are within normal values (Allen et al., 1987) and similar to those in the crystal structure of 4,6-diphenylpyrimidin-2-ylamine (Fun et al., 2006).

In the crystal packing (Fig. 2), two neighbouring molecules are linked by intermolecular N3—H3B···N2 hydrogen bonds (Table 1) to form dimers with R22(8) ring motifs (Bernstein et al., 1995). These dimers are stacked along the b axis.

Experimental

A mixture of S-methylisothiourea sulphate (556 mg, 2.0 mmol), potassium carbonate (345 mg, 2.5 mmol) and butylamine (292 mg, 4.0 mmol) was thoroughly mixed together and then irradiated at 450 Watt for 12 min in a microwave oven. The solid mass was washed with CHCl3 to remove the unreacted butylamine and it was then dried. The solid residue formed was mixed with benzoylacetone (648 mg, 4.0 mmol) and again irradiated at 300 Watt for 5 min. Then it was dissolved in water and extracted with chloroform. The crude product was purified by column chromatography (silica gel, 100-200 mesh) with 15% ethyl acetate in petroleum ether as eluant. Single crystals were grown by slow evaporation of a chloroform solution. Yield: 75 %; Mp: 328-329 K.

Refinement

H3B was located in a difference Fourier map and refined freely [N–H = 0.797 (18) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms [C–H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis, showing the R22(8) ring motifs. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C15H19N3F(000) = 520
Mr = 241.33Dx = 1.214 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4691 reflections
a = 13.4828 (9) Åθ = 3.0–30.0°
b = 5.1618 (3) ŵ = 0.07 mm1
c = 22.8462 (11) ÅT = 100 K
β = 123.863 (3)°Plate, colourless
V = 1320.29 (13) Å30.30 × 0.23 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer3829 independent reflections
Radiation source: fine-focus sealed tube3085 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −18→18
Tmin = 0.978, Tmax = 0.994k = −7→7
13801 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.15w = 1/[σ2(Fo2) + (0.0985P)2 + 0.2466P] where P = (Fo2 + 2Fc2)/3
3829 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.28959 (9)0.3936 (2)0.81414 (5)0.0154 (2)
N20.37437 (9)0.2822 (2)0.93559 (5)0.0152 (2)
N30.45114 (9)0.6155 (2)0.90539 (5)0.0157 (2)
C10.36872 (10)0.4257 (2)0.88392 (6)0.0144 (2)
C20.29524 (10)0.0896 (2)0.91422 (6)0.0156 (2)
C30.20994 (10)0.0413 (2)0.84312 (6)0.0165 (2)
H3A0.1549−0.09260.82900.020*
C40.20988 (10)0.2004 (2)0.79384 (6)0.0147 (2)
C50.12498 (10)0.1654 (2)0.71633 (6)0.0163 (2)
C60.13025 (13)0.3317 (3)0.67022 (7)0.0273 (3)
H6A0.18490.46740.68810.033*
C70.05468 (14)0.2972 (3)0.59776 (7)0.0319 (3)
H7A0.05930.40970.56760.038*
C8−0.02738 (12)0.0971 (3)0.57018 (7)0.0239 (3)
H8A−0.07760.07370.52170.029*
C9−0.03385 (13)−0.0677 (3)0.61560 (7)0.0295 (3)
H9A−0.0893−0.20190.59750.035*
C100.04193 (13)−0.0343 (3)0.68824 (7)0.0271 (3)
H10A0.0369−0.14700.71830.033*
C110.30354 (12)−0.0752 (3)0.97066 (6)0.0199 (3)
H11A0.3830−0.14311.00030.030*
H11B0.2477−0.21570.94940.030*
H11C0.28520.02760.99850.030*
C120.46551 (11)0.7606 (2)0.85587 (6)0.0167 (2)
H12A0.51120.91640.87870.020*
H12B0.38750.81270.81600.020*
C130.52875 (11)0.6029 (2)0.82927 (6)0.0176 (3)
H13A0.48360.44550.80750.021*
H13B0.52860.70200.79310.021*
C140.65693 (11)0.5300 (3)0.88617 (6)0.0194 (3)
H14A0.65960.45870.92630.023*
H14B0.70600.68480.90180.023*
C150.70840 (12)0.3326 (3)0.86024 (7)0.0266 (3)
H15A0.79020.29830.89700.040*
H15B0.70400.40040.81970.040*
H15C0.66330.17470.84770.040*
H3B0.4963 (16)0.637 (4)0.9468 (9)0.026 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0164 (5)0.0151 (5)0.0137 (4)−0.0001 (3)0.0077 (4)−0.0003 (4)
N20.0164 (5)0.0158 (5)0.0136 (4)0.0003 (3)0.0084 (4)0.0003 (4)
N30.0175 (5)0.0173 (5)0.0112 (4)−0.0035 (4)0.0073 (4)−0.0013 (4)
C10.0149 (5)0.0140 (5)0.0145 (5)0.0006 (4)0.0084 (4)−0.0006 (4)
C20.0170 (5)0.0154 (5)0.0164 (5)0.0016 (4)0.0106 (5)0.0006 (4)
C30.0175 (5)0.0154 (5)0.0172 (5)−0.0013 (4)0.0101 (4)−0.0002 (4)
C40.0149 (5)0.0144 (5)0.0148 (5)0.0016 (4)0.0084 (4)−0.0005 (4)
C50.0153 (5)0.0180 (6)0.0149 (5)0.0016 (4)0.0080 (4)−0.0005 (4)
C60.0324 (7)0.0241 (7)0.0168 (6)−0.0091 (6)0.0084 (5)0.0008 (5)
C70.0376 (8)0.0336 (8)0.0155 (6)−0.0093 (6)0.0093 (6)0.0024 (5)
C80.0183 (6)0.0332 (7)0.0140 (5)−0.0009 (5)0.0050 (5)−0.0032 (5)
C90.0244 (7)0.0385 (8)0.0193 (6)−0.0157 (6)0.0082 (5)−0.0066 (6)
C100.0275 (7)0.0329 (8)0.0179 (6)−0.0126 (6)0.0107 (5)−0.0022 (5)
C110.0233 (6)0.0201 (6)0.0168 (5)−0.0024 (5)0.0115 (5)0.0021 (4)
C120.0190 (5)0.0156 (5)0.0156 (5)−0.0008 (4)0.0097 (4)0.0019 (4)
C130.0192 (6)0.0207 (6)0.0132 (5)0.0000 (4)0.0093 (5)0.0012 (4)
C140.0188 (6)0.0227 (6)0.0156 (5)0.0016 (4)0.0090 (5)−0.0001 (4)
C150.0234 (6)0.0283 (7)0.0270 (7)0.0025 (5)0.0133 (5)−0.0050 (5)

Geometric parameters (Å, °)

N1—C41.3453 (15)C8—H8A0.9300
N1—C11.3459 (15)C9—C101.3921 (18)
N2—C21.3362 (15)C9—H9A0.9300
N2—C11.3593 (15)C10—H10A0.9300
N3—C11.3520 (15)C11—H11A0.9600
N3—C121.4570 (15)C11—H11B0.9600
N3—H3B0.797 (18)C11—H11C0.9600
C2—C31.3934 (16)C12—C131.5284 (16)
C2—C111.4957 (16)C12—H12A0.9700
C3—C41.3932 (16)C12—H12B0.9700
C3—H3A0.9300C13—C141.5214 (17)
C4—C51.4899 (16)C13—H13A0.9700
C5—C101.3886 (18)C13—H13B0.9700
C5—C61.3910 (18)C14—C151.5263 (18)
C6—C71.3894 (18)C14—H14A0.9700
C6—H6A0.9300C14—H14B0.9700
C7—C81.383 (2)C15—H15A0.9600
C7—H7A0.9300C15—H15B0.9600
C8—C91.382 (2)C15—H15C0.9600
C4—N1—C1116.94 (10)C5—C10—H10A119.7
C2—N2—C1116.17 (10)C9—C10—H10A119.7
C1—N3—C12121.92 (10)C2—C11—H11A109.5
C1—N3—H3B117.5 (13)C2—C11—H11B109.5
C12—N3—H3B120.3 (13)H11A—C11—H11B109.5
N1—C1—N3117.88 (10)C2—C11—H11C109.5
N1—C1—N2125.85 (10)H11A—C11—H11C109.5
N3—C1—N2116.27 (10)H11B—C11—H11C109.5
N2—C2—C3122.10 (10)N3—C12—C13112.34 (10)
N2—C2—C11116.56 (10)N3—C12—H12A109.1
C3—C2—C11121.33 (11)C13—C12—H12A109.1
C4—C3—C2117.72 (11)N3—C12—H12B109.1
C4—C3—H3A121.1C13—C12—H12B109.1
C2—C3—H3A121.1H12A—C12—H12B107.9
N1—C4—C3121.19 (11)C14—C13—C12114.32 (10)
N1—C4—C5115.89 (10)C14—C13—H13A108.7
C3—C4—C5122.91 (11)C12—C13—H13A108.7
C10—C5—C6118.46 (11)C14—C13—H13B108.7
C10—C5—C4121.79 (11)C12—C13—H13B108.7
C6—C5—C4119.73 (11)H13A—C13—H13B107.6
C7—C6—C5120.68 (13)C13—C14—C15112.29 (10)
C7—C6—H6A119.7C13—C14—H14A109.1
C5—C6—H6A119.7C15—C14—H14A109.1
C8—C7—C6120.54 (13)C13—C14—H14B109.1
C8—C7—H7A119.7C15—C14—H14B109.1
C6—C7—H7A119.7H14A—C14—H14B107.9
C9—C8—C7119.15 (12)C14—C15—H15A109.5
C9—C8—H8A120.4C14—C15—H15B109.5
C7—C8—H8A120.4H15A—C15—H15B109.5
C8—C9—C10120.51 (13)C14—C15—H15C109.5
C8—C9—H9A119.7H15A—C15—H15C109.5
C10—C9—H9A119.7H15B—C15—H15C109.5
C5—C10—C9120.66 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.798 (17)2.283 (17)3.0802 (14)177 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2745).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brown, D. J. & Lyall, M. J. (1964). Aust. J. Chem.17, 794–802.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.
  • Goswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175–1181.
  • Jonckers, T. H. M., Maes, B. U. W., Lemiere, G. L. F. & Dommisse, R. (2001). Tetrahedron, 57, 7027–7034.
  • Katrizky, A. R. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153–158.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography