PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o834.
Published online 2010 March 13. doi:  10.1107/S160053681000718X
PMCID: PMC2984041

1,3-Bis(bromo­meth­yl)-2-nitro­benzene

Abstract

In the title compound, C8H7Br2NO2, an inter­mediate for the synthesis of macrocycles, the NO2 group makes a dihedral angle of 65.07 (19)° with the arene ring, and the bromo­methyl substituents adopt a trans conformation about the ring such that the mol­ecule closely approximates C2 symmetry.

Related literature

For related structures, see: Li et al. (2006 [triangle]); Qin et al. (2005 [triangle]). For related compounds, see: Raatikainen et al. (2008 [triangle]); Mough et al. (2004 [triangle]). For the synthesis, see: Boeckmann & Vögtle (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o834-scheme1.jpg

Experimental

Crystal data

  • C8H7Br2NO2
  • M r = 308.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o834-efi1.jpg
  • a = 7.7837 (13) Å
  • b = 7.7573 (13) Å
  • c = 15.938 (3) Å
  • β = 90.933 (3)°
  • V = 962.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 8.39 mm−1
  • T = 185 K
  • 0.20 × 0.20 × 0.08 mm

Data collection

  • Bruker SMART 1K diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.285, T max = 0.553
  • 8228 measured reflections
  • 2259 independent reflections
  • 1812 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.083
  • S = 1.06
  • 2259 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 1.35 e Å−3
  • Δρmin = −1.31 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]), PLATON (Spek, 2009 [triangle]) and X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000718X/ng2729sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000718X/ng2729Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Higher Education Commission of Pakistan for providing a fellowship to MNA under the Inter­national Research Support Initiative Programme (IRSIP). KTH acknowledges grant support from the National Science Foundation (DMR-0349316).

supplementary crystallographic information

Comment

Derivatives of 1,3-bis(bromomethyl)benzene have been widely used to synthesize macrocycles via SN2 reactions. For recent examples, see Raatikainen et al., 2008 and Mough et al., 2004.

The crystal structure of the title compound is in comparison with the already reported 1,3-bis(bromomethyl)benzene (II) (Li et al., 2006) and 2,3-bis(bromomethyl)-1-methoxy-4-nitrobenzene (III) (Qin et al., 2005). The nitro group of I is oriented at a dihedral angle of 65.07(0.19)° to the arene ring. The bromomethyl groups (C7/Br1 and C8/Br2) are oriented anti to each other and exhibit almost identical dihedral angles with respect to arene ring carbons atoms (80.34(0.27)° and 80.99(0.28)°, respectively). The molecules therefore closely approximate C2 point group symmetry in the crystal.

Experimental

The title compound was prepared following the method reported by Boeckmann and Vögtle et al., 1981.

Refinement

The aromatic and methylene H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 0.99 Å, Uiso = 1.2Ueq (C) for methylene

Electron density synthesis with coefficients Fo—Fc: Highest peak 1.35 at 0.7472 0.2174 0.6981 [ 0.78 A from BR2 ] Deepest hole -1.31 at 0.7372 0.0534 0.6462 [ 0.75 A from BR2 ]

Figures

Fig. 1.
The labelled thermal ellipsoid plot of (I) at the 50% probability level.
Fig. 2.
The unit cell packing diagram of (I) as viewed down the b axis.

Crystal data

C8H7Br2NO2F(000) = 592
Mr = 308.97Dx = 2.133 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1024 reflections
a = 7.7837 (13) Åθ = 2.6–28.0°
b = 7.7573 (13) ŵ = 8.39 mm1
c = 15.938 (3) ÅT = 185 K
β = 90.933 (3)°Needles, colorless
V = 962.2 (3) Å30.20 × 0.20 × 0.08 mm
Z = 4

Data collection

Bruker SMART 1K diffractometer2259 independent reflections
Radiation source: fine-focus sealed tube1812 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scanθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.285, Tmax = 0.553k = −10→10
8228 measured reflectionsl = −21→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0289P)2 + 1.9462P] where P = (Fo2 + 2Fc2)/3
2259 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = −1.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.20766 (5)0.59088 (5)0.74548 (2)0.03326 (13)
Br20.26732 (6)0.86865 (6)0.32665 (3)0.04186 (15)
C10.2474 (4)0.6504 (4)0.5246 (2)0.0211 (7)
N10.2391 (4)0.8324 (4)0.55227 (19)0.0245 (7)
C20.1776 (4)0.6087 (4)0.4461 (2)0.0203 (7)
C30.1891 (5)0.4378 (5)0.4212 (2)0.0238 (8)
H30.14500.40510.36760.029*
O10.3753 (4)0.9089 (4)0.5617 (2)0.0434 (8)
C60.3228 (4)0.5301 (5)0.5786 (2)0.0205 (7)
C50.3295 (5)0.3604 (5)0.5504 (2)0.0249 (8)
H50.38070.27500.58550.030*
C70.3935 (5)0.5748 (5)0.6637 (2)0.0281 (8)
H7A0.45500.68640.66100.034*
H7B0.47680.48540.68200.034*
O20.0993 (4)0.8953 (4)0.5634 (2)0.0426 (8)
C40.2638 (5)0.3131 (5)0.4729 (2)0.0260 (8)
H40.26950.19650.45500.031*
C80.0943 (5)0.7371 (5)0.3889 (2)0.0259 (8)
H8A0.02390.81740.42220.031*
H8B0.01700.67660.34870.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0391 (2)0.0396 (2)0.0212 (2)−0.00245 (18)0.00494 (16)−0.00610 (16)
Br20.0346 (2)0.0541 (3)0.0370 (3)−0.0017 (2)0.00213 (18)0.0232 (2)
C10.0198 (17)0.0187 (17)0.0247 (18)−0.0006 (14)0.0027 (14)−0.0005 (14)
N10.0324 (18)0.0223 (16)0.0188 (15)0.0027 (13)−0.0022 (13)0.0000 (12)
C20.0161 (16)0.0231 (18)0.0218 (18)−0.0003 (14)0.0033 (14)0.0018 (14)
C30.0227 (18)0.030 (2)0.0190 (18)−0.0043 (15)0.0030 (15)−0.0041 (15)
O10.0381 (17)0.0343 (16)0.058 (2)−0.0126 (14)0.0095 (15)−0.0141 (15)
C60.0153 (16)0.0287 (18)0.0175 (17)−0.0005 (14)0.0020 (14)0.0005 (14)
C50.0254 (19)0.0218 (17)0.028 (2)0.0038 (15)0.0060 (16)0.0076 (15)
C70.0247 (19)0.038 (2)0.0215 (19)0.0002 (16)−0.0013 (15)0.0014 (16)
O20.0310 (16)0.0359 (16)0.061 (2)0.0146 (13)−0.0064 (15)−0.0158 (15)
C40.0258 (19)0.0215 (18)0.031 (2)−0.0022 (15)0.0074 (16)−0.0021 (15)
C80.0228 (19)0.031 (2)0.0236 (19)−0.0007 (16)0.0001 (15)0.0058 (15)

Geometric parameters (Å, °)

Br1—C71.967 (4)C3—H30.9500
Br2—C81.971 (4)C6—C51.392 (5)
C1—C61.392 (5)C6—C71.497 (5)
C1—C21.395 (5)C5—C41.379 (5)
C1—N11.480 (5)C5—H50.9500
N1—O21.209 (4)C7—H7A0.9900
N1—O11.222 (4)C7—H7B0.9900
C2—C31.387 (5)C4—H40.9500
C2—C81.491 (5)C8—H8A0.9900
C3—C41.392 (5)C8—H8B0.9900
C6—C1—C2123.6 (3)C6—C5—H5119.2
C6—C1—N1118.4 (3)C6—C7—Br1110.6 (2)
C2—C1—N1118.0 (3)C6—C7—H7A109.5
O2—N1—O1124.5 (3)Br1—C7—H7A109.5
O2—N1—C1118.2 (3)C6—C7—H7B109.5
O1—N1—C1117.3 (3)Br1—C7—H7B109.5
C3—C2—C1116.9 (3)H7A—C7—H7B108.1
C3—C2—C8119.6 (3)C5—C4—C3119.4 (3)
C1—C2—C8123.5 (3)C5—C4—H4120.3
C2—C3—C4121.6 (3)C3—C4—H4120.3
C2—C3—H3119.2C2—C8—Br2111.1 (2)
C4—C3—H3119.2C2—C8—H8A109.4
C1—C6—C5116.9 (3)Br2—C8—H8A109.4
C1—C6—C7123.3 (3)C2—C8—H8B109.4
C5—C6—C7119.7 (3)Br2—C8—H8B109.4
C4—C5—C6121.7 (3)H8A—C8—H8B108.0
C4—C5—H5119.2
C6—C1—N1—O2−115.0 (4)N1—C1—C6—C5−179.6 (3)
C2—C1—N1—O264.5 (5)C2—C1—C6—C7−178.4 (3)
C6—C1—N1—O165.5 (5)N1—C1—C6—C71.0 (5)
C2—C1—N1—O1−115.1 (4)C1—C6—C5—C4−0.3 (5)
C6—C1—C2—C3−1.5 (5)C7—C6—C5—C4179.1 (3)
N1—C1—C2—C3179.1 (3)C1—C6—C7—Br180.1 (4)
C6—C1—C2—C8179.0 (3)C5—C6—C7—Br1−99.3 (3)
N1—C1—C2—C8−0.4 (5)C6—C5—C4—C30.2 (5)
C1—C2—C3—C41.2 (5)C2—C3—C4—C5−0.6 (5)
C8—C2—C3—C4−179.2 (3)C3—C2—C8—Br2−98.9 (3)
C2—C1—C6—C51.0 (5)C1—C2—C8—Br280.6 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2729).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Boeckmann, K. & Vögtle, F. (1981). Liebigs Ann. Chem.3, 467–475.
  • Bruker (2001). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Li, Q.-X., Cai, L., Wang, X.-F. & Shen, Y.-J. (2006). Acta Cryst. E62, o5726–o5727.
  • Mough, S. T., Goeltz, J. C. & Holman, K. T. (2004). Angew. Chem. Int. Ed.43, 5631–5635. [PubMed]
  • Qin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257–o3258.
  • Raatikainen, K., Huuskonen, J., Kolehmainen, E. & Rissanen, K. (2008). Chem. Eur. J.14, 3297–3305. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography