PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o889.
Published online 2010 March 20. doi:  10.1107/S1600536810009864
PMCID: PMC2984040

Sodium N,2-dichloro­benzene­sulfonamidate sesquihydrate

Abstract

In the title compound, Na+·C6H4Cl2NO2S·1.5H2O, one of the water mol­ecules lies on a twofold axis. There is no inter­action between the N atom and the sodium ion. The sodium ion exhibits a pseudo-octa­hedral coordination defined by three water O atoms and three sulfonyl O atoms from three different anions. The S—N distance of 1.588 (2) Å is consistent with an S=N double bond. The crystal structure is stabilized by O—H(...)N and O—H(...)Cl hydrogen bonds.

Related literature

For background to N-haloaryl­sulfonamides, see: Gowda et al. (2005 [triangle]). For related structures, see: Gowda et al. (2007 [triangle], 2009 [triangle]); George et al. (2000 [triangle]); Olmstead & Power (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o889-scheme1.jpg

Experimental

Crystal data

  • Na+·C6H4Cl2NO2S·1.5H2O
  • M r = 275.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o889-efi1.jpg
  • a = 11.1288 (7) Å
  • b = 6.6724 (4) Å
  • c = 28.144 (2) Å
  • β = 102.274 (6)°
  • V = 2042.1 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.87 mm−1
  • T = 299 K
  • 0.46 × 0.36 × 0.28 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.691, T max = 0.794
  • 6590 measured reflections
  • 2076 independent reflections
  • 1944 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.069
  • S = 1.15
  • 2076 reflections
  • 141 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009864/bx2268sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009864/bx2268Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

In the present work, as a part of exploring the substituent effects on the solid-state structures of N-halo arylsulfonamidates (Gowda et al., 2005; 2007; 2009), the structure of sodium N-chloro-2-chloro- benzenesulfonamidate (I) has been determined (Fig. 1). The structure of (I) resembles the sodium salts of N-chloro-4-chlorobenzenesulfonamidate (Gowda et al., 2007), N-chloro-2-methylbenzenesulfonamidate (Gowda et al., 2009), and other sodium N-chloro- arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

The sodium ion shows pseudo-octahedral coordination defined by three water-O atoms and by three sulfonyl-O atoms derived from three different anions. There is no interaction between the nitrogen and sodium ions. The S—N distance of 1.588 (2)Å is consistent with a S—N double bond and is in agreement with those observed with related N-chloro arylsulfonamides.

The Packing diagram consists of a two-dimensional polymeric layer running parallel to the ac plane (Fig. 2). The molecular packing is stabilized by N-H···O and O-H···Cl hydrogen bonds (Table 1)

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2005; 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its chloroform solution at room temperature.

Refinement

The O-bound H atoms were located in difference map and later restrained to O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

Na+·C6H4Cl2NO2S·1.5H2OF(000) = 1112
Mr = 275.08Dx = 1.789 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2816 reflections
a = 11.1288 (7) Åθ = 3.0–27.9°
b = 6.6724 (4) ŵ = 0.87 mm1
c = 28.144 (2) ÅT = 299 K
β = 102.274 (6)°Prism, colourless
V = 2042.1 (2) Å30.46 × 0.36 × 0.28 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2076 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
graphiteRint = 0.014
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −13→13
Tmin = 0.691, Tmax = 0.794k = −8→6
6590 measured reflectionsl = −33→35

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.15w = 1/[σ2(Fo2) + (0.0246P)2 + 3.4504P] where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max = 0.006
141 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. (CrysAlis RED; Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.31355 (16)0.8280 (3)0.10792 (6)0.0208 (4)
C20.39097 (18)0.8966 (3)0.07759 (7)0.0257 (4)
C30.3434 (2)0.9809 (3)0.03289 (8)0.0376 (5)
H30.39511.02610.01320.045*
C40.2181 (2)0.9965 (4)0.01810 (8)0.0454 (6)
H40.18431.0514−0.01220.054*
C50.1413 (2)0.9312 (4)0.04792 (9)0.0431 (6)
H50.05660.94460.03750.052*
C60.18813 (18)0.8472 (3)0.09260 (7)0.0301 (4)
H60.13580.80380.11220.036*
Cl10.38325 (5)0.35684 (8)0.123234 (19)0.03468 (14)
Cl20.54842 (5)0.88282 (9)0.09392 (2)0.04180 (16)
N10.45784 (14)0.5415 (2)0.16212 (6)0.0255 (3)
Na10.14395 (7)0.50352 (13)0.23560 (3)0.03065 (19)
O10.25555 (13)0.6627 (2)0.18286 (5)0.0329 (3)
O20.44039 (12)0.8680 (2)0.19636 (5)0.0295 (3)
O30.29191 (13)0.6793 (2)0.29703 (5)0.0333 (3)
H310.3538 (18)0.627 (4)0.3106 (9)0.040*
H320.258 (2)0.718 (4)0.3182 (8)0.040*
O40.00000.7742 (3)0.25000.0336 (5)
H410.013 (2)0.852 (3)0.2729 (7)0.040*
S10.36626 (4)0.71995 (7)0.166416 (15)0.02023 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0244 (9)0.0166 (8)0.0201 (8)0.0008 (7)0.0022 (7)−0.0003 (7)
C20.0290 (10)0.0207 (9)0.0277 (9)−0.0013 (8)0.0068 (8)−0.0009 (8)
C30.0540 (14)0.0311 (11)0.0293 (11)−0.0020 (10)0.0129 (10)0.0059 (9)
C40.0605 (15)0.0406 (13)0.0279 (11)0.0060 (12)−0.0068 (10)0.0108 (10)
C50.0355 (12)0.0442 (13)0.0412 (12)0.0054 (10)−0.0106 (9)0.0065 (11)
C60.0239 (9)0.0331 (11)0.0310 (10)0.0007 (8)0.0008 (8)0.0010 (9)
Cl10.0399 (3)0.0266 (3)0.0380 (3)−0.0038 (2)0.0092 (2)−0.0080 (2)
Cl20.0281 (3)0.0487 (3)0.0520 (3)−0.0023 (2)0.0163 (2)0.0120 (3)
N10.0243 (8)0.0226 (8)0.0269 (8)0.0010 (7)−0.0002 (6)−0.0014 (7)
Na10.0281 (4)0.0325 (4)0.0328 (4)−0.0052 (3)0.0097 (3)0.0006 (3)
O10.0272 (7)0.0430 (9)0.0309 (7)−0.0009 (6)0.0116 (6)0.0065 (7)
O20.0295 (7)0.0308 (8)0.0252 (7)−0.0014 (6)−0.0007 (5)−0.0081 (6)
O30.0245 (7)0.0408 (9)0.0333 (8)0.0014 (7)0.0035 (6)−0.0031 (7)
O40.0432 (12)0.0244 (11)0.0291 (11)0.000−0.0015 (9)0.000
S10.0197 (2)0.0233 (2)0.0173 (2)−0.00026 (17)0.00302 (15)0.00009 (17)

Geometric parameters (Å, °)

C1—C61.376 (3)Na1—O2i2.4710 (15)
C1—C21.412 (3)Na1—O2ii2.4759 (15)
C1—S11.7786 (18)Na1—O42.5035 (18)
C2—C31.377 (3)Na1—O3ii2.5120 (18)
C2—Cl21.717 (2)Na1—S1ii3.3661 (9)
C3—C41.372 (3)O1—S11.4562 (14)
C3—H30.9300O2—S11.4390 (14)
C4—C51.389 (4)O2—Na1iii2.4710 (15)
C4—H40.9300O2—Na1iv2.4759 (15)
C5—C61.374 (3)O3—Na1iv2.5120 (18)
C5—H50.9300O3—H310.792 (16)
C6—H60.9300O3—H320.811 (16)
Cl1—N11.7376 (16)O4—Na1v2.5035 (18)
N1—S11.5883 (16)O4—H410.814 (16)
Na1—O12.3785 (15)S1—Na1iv3.3661 (9)
Na1—O32.4220 (17)
C6—C1—C2119.28 (17)O2ii—Na1—O3ii98.75 (6)
C6—C1—S1116.14 (14)O4—Na1—O3ii157.17 (5)
C2—C1—S1124.58 (14)O1—Na1—S1ii151.07 (5)
C3—C2—C1121.30 (19)O3—Na1—S1ii79.85 (4)
C3—C2—Cl2116.02 (16)O2i—Na1—S1ii88.45 (4)
C1—C2—Cl2122.68 (15)O2ii—Na1—S1ii22.58 (3)
C4—C3—C2118.5 (2)O4—Na1—S1ii97.97 (3)
C4—C3—H3120.8O3ii—Na1—S1ii82.95 (4)
C2—C3—H3120.8S1—O1—Na1154.80 (9)
C3—C4—C5120.6 (2)S1—O2—Na1iii150.45 (9)
C3—C4—H4119.7S1—O2—Na1iv116.06 (8)
C5—C4—H4119.7Na1iii—O2—Na1iv89.02 (5)
C6—C5—C4121.3 (2)Na1—O3—Na1iv111.04 (6)
C6—C5—H5119.4Na1—O3—H31121.4 (19)
C4—C5—H5119.4Na1iv—O3—H31105.4 (19)
C5—C6—C1119.1 (2)Na1—O3—H32108.9 (19)
C5—C6—H6120.5Na1iv—O3—H32102.1 (19)
C1—C6—H6120.5H31—O3—H32106 (3)
S1—N1—Cl1110.56 (9)Na1v—O4—Na187.67 (8)
O1—Na1—O382.14 (6)Na1v—O4—H41109.7 (18)
O1—Na1—O2i115.80 (6)Na1—O4—H41125.3 (18)
O3—Na1—O2i156.33 (6)O2—S1—O1114.36 (9)
O1—Na1—O2ii168.48 (6)O2—S1—N1105.17 (8)
O3—Na1—O2ii86.38 (6)O1—S1—N1115.30 (9)
O2i—Na1—O2ii75.50 (6)O2—S1—C1107.39 (9)
O1—Na1—O4102.47 (6)O1—S1—C1105.41 (8)
O3—Na1—O484.05 (5)N1—S1—C1108.91 (8)
O2i—Na1—O477.23 (5)O2—S1—Na1iv41.36 (6)
O2ii—Na1—O477.14 (5)O1—S1—Na1iv73.08 (6)
O1—Na1—O3ii85.97 (6)N1—S1—Na1iv128.14 (6)
O3—Na1—O3ii118.37 (5)C1—S1—Na1iv117.93 (6)
O2i—Na1—O3ii79.99 (5)
C6—C1—C2—C3−0.5 (3)O2ii—Na1—O4—Na1v−38.86 (3)
S1—C1—C2—C3−179.26 (16)O3ii—Na1—O4—Na1v43.09 (13)
C6—C1—C2—Cl2178.96 (16)S1ii—Na1—O4—Na1v−47.647 (17)
S1—C1—C2—Cl20.2 (2)Na1iii—O2—S1—O1141.67 (17)
C1—C2—C3—C4−0.2 (3)Na1iv—O2—S1—O1−3.82 (12)
Cl2—C2—C3—C4−179.70 (18)Na1iii—O2—S1—N114.2 (2)
C2—C3—C4—C50.9 (4)Na1iv—O2—S1—N1−131.33 (9)
C3—C4—C5—C6−0.8 (4)Na1iii—O2—S1—C1−101.75 (18)
C4—C5—C6—C10.1 (4)Na1iv—O2—S1—C1112.77 (9)
C2—C1—C6—C50.5 (3)Na1iii—O2—S1—Na1iv145.5 (2)
S1—C1—C6—C5179.42 (17)Na1—O1—S1—O2−71.7 (2)
O3—Na1—O1—S150.3 (2)Na1—O1—S1—N150.4 (3)
O2i—Na1—O1—S1−145.9 (2)Na1—O1—S1—C1170.6 (2)
O2ii—Na1—O1—S145.6 (5)Na1—O1—S1—Na1iv−74.3 (2)
O4—Na1—O1—S1132.4 (2)Cl1—N1—S1—O2−175.92 (9)
O3ii—Na1—O1—S1−69.0 (2)Cl1—N1—S1—O157.14 (12)
S1ii—Na1—O1—S1−1.5 (3)Cl1—N1—S1—C1−61.07 (11)
O1—Na1—O3—Na1iv31.28 (6)Cl1—N1—S1—Na1iv144.96 (6)
O2i—Na1—O3—Na1iv−109.93 (14)C6—C1—S1—O2−118.21 (15)
O2ii—Na1—O3—Na1iv−149.66 (7)C2—C1—S1—O260.61 (18)
O4—Na1—O3—Na1iv−72.23 (6)C6—C1—S1—O14.11 (17)
O3ii—Na1—O3—Na1iv112.35 (9)C2—C1—S1—O1−177.07 (16)
S1ii—Na1—O3—Na1iv−171.45 (6)C6—C1—S1—N1128.38 (15)
O1—Na1—O4—Na1v152.95 (5)C2—C1—S1—N1−52.80 (18)
O3—Na1—O4—Na1v−126.49 (5)C6—C1—S1—Na1iv−74.61 (16)
O2i—Na1—O4—Na1v38.93 (4)C2—C1—S1—Na1iv104.21 (15)

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, y+1/2, z; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H31···N1vi0.79 (2)2.15 (2)2.926 (2)166 (3)
O3—H32···Cl1iv0.81 (2)2.67 (2)3.4782 (16)171 (2)
O4—H41···N1iv0.81 (2)2.19 (2)3.005 (2)176 (2)

Symmetry codes: (vi) −x+1, y, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2268).

References

  • George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209. [PubMed]
  • Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet.37, 572–582.
  • Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m1644–m1645.
  • Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem.25, 4057–4058.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography