PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o814.
Published online 2010 March 13. doi:  10.1107/S1600536810008615
PMCID: PMC2984038

2-Methyl­benzimidazolium nitrate

Abstract

In the title compound, C8H9N2 +·NO3 , inter­molecular N—H(...)O hydrogen bonds join the mol­ecules into a chain extending along the b axis.

Related literature

For the applications of related benzimidazole compounds, see: Wright (1951 [triangle]); El-masry et al. (2000 [triangle]); Gümüş et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o814-scheme1.jpg

Experimental

Crystal data

  • C8H9N2 +·NO3
  • M r = 195.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o814-efi1.jpg
  • a = 7.711 (4) Å
  • b = 15.127 (7) Å
  • c = 8.270 (4) Å
  • β = 99.398 (7)°
  • V = 951.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.18 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.981, T max = 0.987
  • 4774 measured reflections
  • 1685 independent reflections
  • 1319 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.135
  • S = 1.07
  • 1685 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008615/gk2255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008615/gk2255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant Nos. 20441004, 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

supplementary crystallographic information

Comment

Benzimidazole and its derivatives have found practical applications in a number of fields (Wright, 1951). This ring system is present in numerous antiparasitic, antihelmintic and anti-inflammatory drugs (El-masry et al., 2000). The complexes of transition metals with benzimidazole and related ligands have been extensively studied as models of some important biological molecules (Gümüş et al., 2003). During our search to find new benzimidazole-metal complexes 2-methylbenzimidazole nitrate was unintentionally obtained.

Herein, we report the structure of the title compound, C8H9N3O3 (Fig 1). The crystal structure showed that intermolecular N—H···O hydrogen bonds link the molecules into a 1D polymeric structure (Fig. 2).

Experimental

A mixture of o-phenylenediamine(1.08 g, 10 mmol) and anhydrous sodium acetate (2.46 g, 30 mmol) were dissolved in 100 mL 5% hydrochloric acid. After stirring for 2 h under reflux, the solution was cooled to room temperature. Then the solution was treated with ammonia solution to pH 9-10 and an orange precipitate was formed. The precipitate was filtred and washed with water. 2-methylbenzimidazolium chloride was gained in 27.32% yield. The compound 2-methylbenzimidazole nitrate was obtained in 35% yield when the 2-methylbenzimidazolium chloride (0.46 g, 2.73 mmol) was reacted with Cr(NO3)3.9H2O (1.01 g, 2.54 mmol) in ethanol under reflux. The crystals suitable for X-ray diffraction analysis were obtained by recrystallization from ethanol.

Refinement

All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 (aromatic), 0.96 (CH3—H) and 0.86 (N—H) Å, and with Uiso(H) =kUeq(C), where k is 1.5 for the methyl group and 1.2 for all the other H atoms.

Figures

Fig. 1.
The structure of the title compound showing 50% probability displacement.
Fig. 2.
The supramolecular chain of the title compound formed via N—H···O hydrogen bonds.

Crystal data

C8H9N2+·NO3F(000) = 408
Mr = 195.18Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2174 reflections
a = 7.711 (4) Åθ = 2.5–25.5°
b = 15.127 (7) ŵ = 0.11 mm1
c = 8.270 (4) ÅT = 298 K
β = 99.398 (7)°Block, colorless
V = 951.7 (8) Å30.18 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer1685 independent reflections
Radiation source: fine-focus sealed tube1319 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→9
Tmin = 0.981, Tmax = 0.987k = −11→18
4774 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0681P)2 + 0.208P] where P = (Fo2 + 2Fc2)/3
1685 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3641 (2)0.06287 (10)0.78462 (18)0.0735 (5)
O20.33057 (19)0.15524 (9)0.97555 (17)0.0643 (4)
O30.2248 (3)0.02349 (11)0.9773 (2)0.0915 (6)
N10.3063 (2)0.07987 (10)0.9136 (2)0.0538 (4)
N20.6679 (2)0.12445 (11)0.25067 (19)0.0600 (5)
H20.68280.06870.23740.072*
N30.5577 (2)0.24731 (11)0.31726 (19)0.0576 (5)
H30.48890.28420.35420.069*
C10.3941 (3)0.11166 (15)0.3743 (3)0.0727 (6)
H1A0.39210.05160.33680.109*
H1B0.28390.13950.33310.109*
H1C0.41320.11260.49200.109*
C20.5376 (3)0.15990 (13)0.3145 (2)0.0569 (5)
C30.7769 (3)0.19049 (13)0.2083 (2)0.0561 (5)
C40.7057 (3)0.26993 (13)0.2519 (2)0.0542 (5)
C50.7834 (3)0.35057 (14)0.2303 (3)0.0677 (6)
H50.73560.40350.25950.081*
C60.9355 (3)0.34816 (19)0.1630 (3)0.0805 (7)
H60.99200.40090.14630.097*
C71.0070 (3)0.2684 (2)0.1191 (3)0.0802 (7)
H71.10950.26950.07340.096*
C80.9302 (3)0.18829 (18)0.1416 (3)0.0715 (7)
H80.97870.13530.11340.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1006 (12)0.0560 (9)0.0718 (10)0.0061 (8)0.0370 (9)−0.0048 (7)
O20.0865 (10)0.0434 (8)0.0651 (9)−0.0085 (7)0.0188 (7)−0.0067 (6)
O30.1307 (16)0.0554 (10)0.0990 (13)−0.0287 (10)0.0499 (12)0.0017 (8)
N10.0628 (10)0.0406 (9)0.0590 (10)0.0020 (7)0.0127 (8)0.0042 (7)
N20.0735 (11)0.0464 (9)0.0564 (10)0.0153 (8)−0.0006 (8)−0.0086 (7)
N30.0710 (11)0.0476 (10)0.0521 (9)0.0150 (8)0.0038 (8)−0.0094 (7)
C10.0902 (16)0.0612 (14)0.0673 (13)0.0017 (12)0.0145 (12)−0.0006 (11)
C20.0728 (13)0.0487 (12)0.0462 (10)0.0126 (10)0.0004 (9)−0.0052 (8)
C30.0621 (12)0.0575 (12)0.0440 (10)0.0131 (10)−0.0051 (8)−0.0086 (9)
C40.0619 (11)0.0536 (11)0.0433 (10)0.0096 (9)−0.0024 (8)−0.0058 (8)
C50.0810 (15)0.0539 (13)0.0631 (13)0.0037 (11)−0.0033 (11)−0.0019 (10)
C60.0806 (16)0.0842 (18)0.0716 (15)−0.0133 (14)−0.0030 (12)0.0061 (13)
C70.0679 (14)0.105 (2)0.0662 (14)0.0061 (14)0.0070 (11)−0.0032 (14)
C80.0685 (14)0.0831 (17)0.0593 (13)0.0169 (13)−0.0007 (11)−0.0124 (11)

Geometric parameters (Å, °)

O1—N11.248 (2)C1—H1C0.9600
O2—N11.252 (2)C3—C81.384 (3)
O3—N11.228 (2)C3—C41.393 (3)
N2—C21.322 (3)C4—C51.383 (3)
N2—C31.387 (3)C5—C61.378 (4)
N2—H20.8600C5—H50.9300
N3—C21.331 (3)C6—C71.399 (4)
N3—C41.383 (3)C6—H60.9300
N3—H30.8600C7—C81.374 (4)
C1—C21.476 (3)C7—H70.9300
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600
O3—N1—O1120.19 (17)C8—C3—N2132.5 (2)
O3—N1—O2120.66 (17)C8—C3—C4121.5 (2)
O1—N1—O2119.14 (16)N2—C3—C4105.96 (18)
C2—N2—C3109.90 (17)C5—C4—N3132.13 (19)
C2—N2—H2125.1C5—C4—C3122.0 (2)
C3—N2—H2125.1N3—C4—C3105.85 (18)
C2—N3—C4109.90 (16)C6—C5—C4116.3 (2)
C2—N3—H3125.1C6—C5—H5121.8
C4—N3—H3125.1C4—C5—H5121.8
C2—C1—H1A109.5C5—C6—C7121.7 (2)
C2—C1—H1B109.5C5—C6—H6119.2
H1A—C1—H1B109.5C7—C6—H6119.2
C2—C1—H1C109.5C8—C7—C6121.9 (2)
H1A—C1—H1C109.5C8—C7—H7119.1
H1B—C1—H1C109.5C6—C7—H7119.1
N2—C2—N3108.40 (19)C7—C8—C3116.6 (2)
N2—C2—C1126.37 (19)C7—C8—H8121.7
N3—C2—C1125.23 (19)C3—C8—H8121.7
C3—N2—C2—N3−0.6 (2)C8—C3—C4—N3−178.53 (17)
C3—N2—C2—C1179.86 (19)N2—C3—C4—N3−0.24 (19)
C4—N3—C2—N20.4 (2)N3—C4—C5—C6178.52 (19)
C4—N3—C2—C1179.99 (19)C3—C4—C5—C60.0 (3)
C2—N2—C3—C8178.5 (2)C4—C5—C6—C70.0 (3)
C2—N2—C3—C40.5 (2)C5—C6—C7—C8−0.4 (4)
C2—N3—C4—C5−178.8 (2)C6—C7—C8—C30.7 (3)
C2—N3—C4—C3−0.1 (2)N2—C3—C8—C7−178.4 (2)
C8—C3—C4—C50.3 (3)C4—C3—C8—C7−0.7 (3)
N2—C3—C4—C5178.59 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.032.855 (3)162
N3—H3···O2ii0.861.932.775 (2)166

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2255).

References

  • Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). Molecules, 5, 1429–1438.
  • Gümüş, F., Algül, Ö., Eren, G., Eroğlu, H., Diril, N., Gür, S. & Özkul, A. (2003). Eur. J. Med. Chem.38, 473–480. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wright, J. B. (1951). Chem. Rev.48, 397–541. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography