PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o785.
Published online 2010 March 10. doi:  10.1107/S160053681000824X
PMCID: PMC2984036

(Methyl­enedinitrilo)tetra­acetonitrile

Abstract

The mol­ecular structure of the title compound, C9H10N6, exhibits four cyano­methyl groups around a central N—CH2—N unit. In the crystal structure, mol­ecules are connected via inter­molecular C—H(...)N hydrogen bonds, forming a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For the synthetic procedure, see: W. R. Grace & Co. (1969 [triangle]). For the use of the title compound in the synthesis of N-(phosphono­meth­yl) imino­diacetic acid, see: Obeso Caceres & Urcelay del Pozo (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o785-scheme1.jpg

Experimental

Crystal data

  • C9H10N6
  • M r = 202.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o785-efi1.jpg
  • a = 6.743 (1) Å
  • b = 15.984 (3) Å
  • c = 10.610 (2) Å
  • β = 105.88 (3)°
  • V = 1099.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.976, T max = 0.992
  • 2167 measured reflections
  • 1991 independent reflections
  • 1396 reflections with I > 2σ(I)
  • R int = 0.016
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.143
  • S = 1.00
  • 1991 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000824X/im2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000824X/im2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The tittle compound, {[(Bis-cyanomethyl-amino)-methyl]cyanomethyl-amino}-acetonitrile is an important intermediate for the synthesis of N-(Phosphonomethyl) iminodiacetic acid (Obeso Caceres & Urcelay del Pozo, 1991), which can be used to synthesize glyphosphates. Herein we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal of the title compound molecules are connected via intermolecular C—H···N hydrogen bonds to form a three dimensional network.

Experimental

The title compound, (I) was synthesized according to a literature method (W.R. Grace &Co., 1969). Crystals were obtained by dissolving compound (I) (1.5 g) in methanol (25 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.97 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram for (I). C—H···N hydrogen bonds are shown as dashed lines.

Crystal data

C9H10N6F(000) = 424
Mr = 202.23Dx = 1.221 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.743 (1) Åθ = 10–13°
b = 15.984 (3) ŵ = 0.08 mm1
c = 10.610 (2) ÅT = 293 K
β = 105.88 (3)°Block, colorless
V = 1099.9 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1396 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = 0→19
Tmin = 0.976, Tmax = 0.992l = −12→12
2167 measured reflections3 standard reflections every 200 reflections
1991 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1991 reflectionsΔρmax = 0.13 e Å3
137 parametersΔρmin = −0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.112 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0963 (3)0.70909 (15)0.4827 (2)0.0615 (6)
N1−0.0281 (3)0.67348 (19)0.5772 (2)0.1033 (9)
C2−0.1891 (3)0.75550 (13)0.3610 (2)0.0500 (5)
H2A−0.28110.71790.30050.060*
H2B−0.27270.80020.38130.060*
N20.3724 (3)0.66055 (14)0.3957 (2)0.0783 (7)
C30.2363 (3)0.69176 (13)0.3233 (2)0.0528 (6)
N3−0.2530 (3)1.06022 (13)0.3005 (2)0.0812 (7)
C40.0600 (3)0.73457 (12)0.23192 (19)0.0472 (5)
H4A0.11010.76520.16790.057*
H4B−0.03620.69260.18510.057*
N40.3020 (3)1.08661 (11)0.45391 (19)0.0650 (6)
N5−0.0489 (2)0.79180 (9)0.29447 (15)0.0444 (4)
C5−0.1757 (3)1.01621 (13)0.2444 (2)0.0563 (6)
N60.1060 (2)0.91629 (9)0.25246 (15)0.0451 (4)
C6−0.0768 (3)0.95691 (13)0.1736 (2)0.0560 (6)
H6A−0.17650.91420.13380.067*
H6B−0.04110.98680.10320.067*
C70.2980 (3)1.03432 (12)0.3814 (2)0.0480 (5)
C80.2920 (3)0.96600 (12)0.2853 (2)0.0555 (6)
H8A0.30940.99050.20530.067*
H8B0.40830.92920.32020.067*
C90.0716 (3)0.86329 (11)0.35568 (18)0.0457 (5)
H9A0.20250.84490.41290.055*
H9B−0.00180.89410.40760.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0474 (12)0.0761 (15)0.0674 (15)0.0003 (11)0.0266 (11)0.0082 (13)
N10.0719 (15)0.150 (2)0.0938 (17)0.0147 (15)0.0319 (13)0.0500 (17)
C20.0450 (11)0.0465 (11)0.0627 (12)0.0006 (9)0.0219 (10)0.0000 (9)
N20.0670 (13)0.0839 (15)0.0872 (15)0.0192 (12)0.0263 (12)0.0043 (12)
C30.0534 (13)0.0451 (11)0.0675 (13)0.0022 (10)0.0292 (11)−0.0072 (10)
N30.0713 (14)0.0637 (13)0.1181 (18)0.0208 (11)0.0419 (13)0.0157 (12)
C40.0527 (11)0.0397 (10)0.0530 (11)−0.0015 (9)0.0210 (10)−0.0084 (9)
N40.0758 (13)0.0522 (11)0.0720 (12)−0.0069 (10)0.0287 (10)−0.0107 (10)
N50.0462 (9)0.0358 (8)0.0559 (9)−0.0021 (7)0.0218 (8)−0.0058 (7)
C50.0470 (12)0.0459 (12)0.0764 (15)0.0039 (10)0.0176 (11)0.0155 (11)
N60.0438 (9)0.0388 (8)0.0552 (9)−0.0052 (7)0.0176 (7)−0.0047 (7)
C60.0596 (13)0.0518 (12)0.0559 (12)−0.0032 (10)0.0148 (10)0.0026 (10)
C70.0479 (12)0.0408 (11)0.0590 (12)−0.0067 (9)0.0210 (10)−0.0010 (9)
C80.0529 (13)0.0479 (11)0.0733 (14)−0.0092 (10)0.0303 (11)−0.0149 (10)
C90.0514 (11)0.0352 (10)0.0510 (11)0.0026 (9)0.0151 (9)−0.0056 (8)

Geometric parameters (Å, °)

C1—N11.135 (3)N5—C91.449 (2)
C1—C21.472 (3)C5—C61.478 (3)
C2—N51.447 (2)N6—C61.441 (2)
C2—H2A0.9700N6—C81.445 (2)
C2—H2B0.9700N6—C91.452 (2)
N2—C31.138 (3)C6—H6A0.9700
C3—C41.480 (3)C6—H6B0.9700
N3—C51.136 (3)C7—C81.487 (3)
C4—N51.443 (2)C8—H8A0.9700
C4—H4A0.9700C8—H8B0.9700
C4—H4B0.9700C9—H9A0.9700
N4—C71.132 (2)C9—H9B0.9700
N1—C1—C2178.7 (2)C8—N6—C9116.50 (16)
N5—C2—C1116.91 (16)N6—C6—C5115.26 (17)
N5—C2—H2A108.1N6—C6—H6A108.5
C1—C2—H2A108.1C5—C6—H6A108.5
N5—C2—H2B108.1N6—C6—H6B108.5
C1—C2—H2B108.1C5—C6—H6B108.5
H2A—C2—H2B107.3H6A—C6—H6B107.5
N2—C3—C4178.2 (2)N4—C7—C8179.6 (2)
N5—C4—C3114.24 (16)N6—C8—C7115.34 (16)
N5—C4—H4A108.7N6—C8—H8A108.4
C3—C4—H4A108.7C7—C8—H8A108.4
N5—C4—H4B108.7N6—C8—H8B108.4
C3—C4—H4B108.7C7—C8—H8B108.4
H4A—C4—H4B107.6H8A—C8—H8B107.5
C4—N5—C2116.91 (15)N5—C9—N6107.91 (14)
C4—N5—C9114.36 (14)N5—C9—H9A110.1
C2—N5—C9117.30 (15)N6—C9—H9A110.1
N3—C5—C6178.4 (2)N5—C9—H9B110.1
C6—N6—C8116.11 (16)N6—C9—H9B110.1
C6—N6—C9114.43 (15)H9A—C9—H9B108.4
N1—C1—C2—N5160 (12)N3—C5—C6—N6−68 (9)
N2—C3—C4—N5−26 (7)C6—N6—C8—C771.1 (2)
C3—C4—N5—C2−77.5 (2)C9—N6—C8—C7−68.2 (2)
C3—C4—N5—C965.1 (2)N4—C7—C8—N6−92 (32)
C1—C2—N5—C470.3 (2)C4—N5—C9—N669.05 (19)
C1—C2—N5—C9−71.2 (2)C2—N5—C9—N6−148.50 (16)
C8—N6—C6—C5−77.2 (2)C6—N6—C9—N568.47 (19)
C9—N6—C6—C563.0 (2)C8—N6—C9—N5−151.47 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···N4i0.972.563.409 (3)146
C4—H4B···N3ii0.972.583.432 (3)147

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x−1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2179).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Obeso Caceres, R. M. & Urcelay del Pozo, M. I. (1991). ES Patent No. 2018746.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • W. R. Grace & Co. (1969). GB Patent No. 1167693.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography