PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o940–o941.
Published online 2010 March 27. doi:  10.1107/S1600536810010469
PMCID: PMC2984028

4-[(2,4-Dimethyl­thia­zol-5-yl)meth­yl]-4-hydr­oxy-2-methyl­isoquinoline-1,3(2H,4H)-dione

Abstract

In the title isoquinoline­dione derivative, C16H16N2O3S, the piperidine ring in the tetra­hydro­isoquinoline ring system adopts a distorted envelope conformation. The thia­zole ring is essentially planar [maximum deviation = 0.004 (1) Å] and is inclined at a dihedral angle of 31.08 (3)° with respect to the mean plane through the tetra­hydro­isoquinoline ring system. In the crystal structure, inter­molecular O—H(...)O and C—H(...)O inter­actions link adjacent mol­ecules into a three-dimensional extended network. The crystal structure is further stabilized by weak C—H(...)π inter­actions.

Related literature

For general background to and applications of isoquinoline­dione derivatives, see: Griesbeck et al. (2003 [triangle]); Hall et al. (1994 [triangle]); Malamas & Hohman (1994 [triangle]); Suau & Villatoro (1994 [triangle]); Zhang et al. (2004 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For related structures, see: Fun et al. (2010a [triangle],b [triangle]); Wang et al. (2000 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o940-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O3S
  • M r = 316.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o940-efi1.jpg
  • a = 10.2424 (8) Å
  • b = 15.0438 (13) Å
  • c = 9.4786 (8) Å
  • β = 92.839 (2)°
  • V = 1458.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100 K
  • 0.52 × 0.26 × 0.09 mm

Data collection

  • Bruker SMART APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.887, T max = 0.979
  • 20742 measured reflections
  • 5260 independent reflections
  • 4752 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.108
  • S = 1.14
  • 5260 reflections
  • 263 parameters
  • All H-atom parameters refined
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010469/is2531sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010469/is2531Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China on the Austria–China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

1,3,4(2H)-Isoquinolinetrione derivatives have a variety of biological activities and are synthetic precursors for many naturally occurring alkaloids (Hall et al., 1994; Malamas & Hohman, 1994). The carbonyl group on C4 of isoquinoline-1,3,4-trione is an active site for photo-induced reactions with alkenes or other hydrogen donors to give photoaddition products such as oxetanes (Suau & Villatoro, 1994). Oxazole derivatives have been used as electron donor species in the Paternò-Büchi photocycloaddition with carbonyl groups (Griesbeck et al., 2003). Other interesting photo-reactions such as the [4+4] photocycloadditions have also been reported on substituted oxazole with 9,10-phenanthraquinone and 1-acetylisatin (Zhang et al., 2004). The crystal structure of Z-2-methyl-3'-phenyl-spiro[isoquinoline-4,2'-oxirane]-1,3-dione has been reported (Wang et al., 2000). In view of the importance of the title compound as a typical H-abstracted product in photoreaction between carbonyl and thiazoles, the paper reports its crystal structure.

In the title isoquinolinedione derivative (Fig. 1), atom C9 is the chiral center. The piperidine ring (C1/N1/C2/C3/C8/C9) of the tetrahydroisoquinoline ring system adopts a distorted envelope conformation with atom C9 as the flap; the puckering amplitude Q = 0.2512 (9) Å, θ = 113.8 (2)° and [var phi] = 291.0 (2)° (Cremer & Pople, 1975). The thiazol ring (C11/C12/N2/C13/S1) is essentially planar, with maximum deviation of 0.004 (1) Å at atom C11, and it inclines at a dihedral angle of 31.08 (3)° with the tetrahydroisoquinoline ring system. Bond lengths and angles are consistent to those observed in related isoquinoline-1,3-dione structures (Fun et al. 2010a,b; Zhang et al., 2004).

In the crystal packing (Fig. 2), intermolecular O3—H1O3···O2, C4—H4A···O1, C10—H10A···O3 and C16—H16B···O1 hydrogen bonds (Table 1) link neighbouring molecules into a three-dimensional extended network. The crystal structure is further stabilized by intermolecular C15—H15B···Cg1 interactions (Table 1) involving the centroid of the C3–C8 benzene ring.

Experimental

The title compound was obtained in the reaction between 1,3,4(2H)-isoquinolinetrione and 1,4,5-trimethyl thiazoles under photo-irradiation with light of wavelength > 400 nm. The compound was purified by flash column chromatography with ethyl acetate and petroleum ether as eluents. X-ray quality single crystals of the title compound were obtained by slow evaporation of solvents from the solution of the title compound in acetone and petroleum ether.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely. Refined distances: C—H = 0.917 (16)–0.994 (15) Å.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis, showing the three-dimensional extended network. H atoms not involved in intermolecular interactions have been omitted for clarity.

Crystal data

C16H16N2O3SF(000) = 664
Mr = 316.37Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9887 reflections
a = 10.2424 (8) Åθ = 2.5–35.1°
b = 15.0438 (13) ŵ = 0.24 mm1
c = 9.4786 (8) ÅT = 100 K
β = 92.839 (2)°Block, colourless
V = 1458.7 (2) Å30.52 × 0.26 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer5260 independent reflections
Radiation source: fine-focus sealed tube4752 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 32.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −15→15
Tmin = 0.887, Tmax = 0.979k = −21→22
20742 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108All H-atom parameters refined
S = 1.14w = 1/[σ2(Fo2) + (0.0649P)2 + 0.2915P] where P = (Fo2 + 2Fc2)/3
5260 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.86697 (2)0.201051 (14)0.69225 (2)0.01443 (7)
O10.38478 (7)0.29484 (4)0.78648 (8)0.01610 (14)
O20.46407 (7)0.59074 (5)0.82383 (8)0.01766 (14)
O30.57054 (7)0.27421 (4)0.59312 (7)0.01403 (13)
N10.42666 (7)0.44221 (5)0.81117 (8)0.01168 (13)
N21.03523 (7)0.32678 (5)0.71641 (8)0.01323 (14)
C10.45580 (8)0.35744 (5)0.76386 (9)0.01077 (14)
C20.49293 (8)0.51881 (6)0.77347 (9)0.01180 (14)
C30.59432 (8)0.50884 (5)0.66814 (9)0.01079 (14)
C40.64725 (9)0.58622 (6)0.61172 (10)0.01449 (16)
C50.73988 (9)0.57934 (6)0.51012 (10)0.01681 (17)
C60.77833 (9)0.49566 (6)0.46357 (10)0.01545 (16)
C70.72519 (9)0.41869 (6)0.51860 (9)0.01266 (15)
C80.63326 (8)0.42498 (5)0.62248 (8)0.01004 (14)
C90.58517 (8)0.34274 (5)0.69351 (8)0.00987 (14)
C100.68361 (8)0.31399 (6)0.81709 (9)0.01249 (15)
C110.81935 (8)0.29894 (5)0.77079 (9)0.01180 (15)
C120.92179 (8)0.35759 (6)0.77307 (9)0.01249 (15)
C131.02070 (8)0.24530 (6)0.66982 (9)0.01282 (15)
C140.31069 (9)0.45045 (6)0.89534 (10)0.01658 (17)
C150.92066 (10)0.45085 (7)0.82696 (11)0.01856 (18)
C161.12481 (9)0.19431 (6)0.59986 (11)0.01685 (17)
H4A0.6166 (16)0.6451 (12)0.6429 (18)0.032 (4)*
H5A0.7767 (17)0.6330 (12)0.4682 (18)0.032 (4)*
H6A0.8450 (15)0.4910 (11)0.3912 (16)0.022 (4)*
H7A0.7529 (14)0.3644 (11)0.4837 (16)0.022 (4)*
H10A0.6458 (14)0.2612 (11)0.8585 (15)0.020 (3)*
H10B0.6861 (14)0.3595 (10)0.8887 (15)0.018 (3)*
H14A0.2427 (16)0.4203 (11)0.8507 (16)0.023 (4)*
H14B0.2864 (18)0.5111 (13)0.8938 (19)0.038 (5)*
H14C0.3297 (17)0.4255 (12)0.9861 (18)0.032 (4)*
H15A1.0023 (19)0.4647 (13)0.870 (2)0.040 (5)*
H15B0.9089 (19)0.4918 (15)0.751 (2)0.048 (5)*
H15C0.8533 (19)0.4625 (13)0.886 (2)0.041 (5)*
H16A1.1181 (16)0.2067 (11)0.5008 (17)0.027 (4)*
H16B1.2092 (17)0.2095 (11)0.6394 (18)0.030 (4)*
H16C1.1129 (18)0.1315 (14)0.6097 (19)0.037 (5)*
H1O30.544 (2)0.2340 (15)0.629 (2)0.043 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01309 (11)0.00929 (11)0.02129 (12)0.00031 (6)0.00483 (8)0.00026 (7)
O10.0134 (3)0.0105 (3)0.0246 (3)−0.0022 (2)0.0038 (2)0.0018 (2)
O20.0202 (3)0.0099 (3)0.0233 (3)0.0007 (2)0.0050 (3)−0.0041 (2)
O30.0196 (3)0.0086 (3)0.0142 (3)−0.0027 (2)0.0042 (2)−0.0027 (2)
N10.0116 (3)0.0093 (3)0.0144 (3)−0.0001 (2)0.0033 (2)−0.0007 (2)
N20.0117 (3)0.0124 (3)0.0156 (3)0.0014 (2)0.0013 (2)−0.0018 (2)
C10.0104 (3)0.0092 (3)0.0127 (3)0.0004 (2)0.0007 (2)0.0003 (3)
C20.0123 (3)0.0093 (3)0.0138 (3)0.0000 (3)0.0000 (3)−0.0005 (3)
C30.0114 (3)0.0088 (3)0.0121 (3)−0.0007 (3)0.0004 (3)0.0008 (2)
C40.0160 (4)0.0091 (3)0.0184 (4)−0.0016 (3)0.0006 (3)0.0020 (3)
C50.0181 (4)0.0135 (4)0.0189 (4)−0.0033 (3)0.0023 (3)0.0048 (3)
C60.0163 (4)0.0160 (4)0.0143 (3)−0.0022 (3)0.0032 (3)0.0034 (3)
C70.0141 (3)0.0124 (3)0.0116 (3)−0.0008 (3)0.0020 (3)0.0007 (3)
C80.0110 (3)0.0091 (3)0.0101 (3)−0.0009 (2)0.0002 (2)0.0009 (2)
C90.0111 (3)0.0074 (3)0.0111 (3)−0.0002 (2)0.0018 (2)−0.0001 (2)
C100.0119 (3)0.0139 (3)0.0118 (3)0.0028 (3)0.0030 (3)0.0027 (3)
C110.0119 (3)0.0115 (3)0.0121 (3)0.0021 (3)0.0020 (3)0.0014 (2)
C120.0117 (3)0.0128 (3)0.0129 (3)0.0020 (3)0.0003 (3)−0.0022 (3)
C130.0120 (3)0.0113 (3)0.0154 (3)0.0010 (3)0.0027 (3)0.0005 (3)
C140.0144 (4)0.0163 (4)0.0197 (4)0.0002 (3)0.0075 (3)−0.0016 (3)
C150.0156 (4)0.0162 (4)0.0237 (4)0.0015 (3)−0.0007 (3)−0.0087 (3)
C160.0150 (4)0.0126 (4)0.0234 (4)0.0022 (3)0.0060 (3)−0.0022 (3)

Geometric parameters (Å, °)

S1—C111.7311 (9)C6—H6A0.994 (15)
S1—C131.7323 (9)C7—C81.3988 (11)
O1—C11.2155 (10)C7—H7A0.931 (16)
O2—C21.2248 (10)C8—C91.5031 (11)
O3—C91.4059 (10)C9—C101.5681 (12)
O3—H1O30.75 (2)C10—C111.4957 (12)
N1—C11.3891 (11)C10—H10A0.974 (16)
N1—C21.3930 (11)C10—H10B0.964 (15)
N1—C141.4685 (11)C11—C121.3703 (12)
N2—C131.3089 (11)C12—C151.4933 (13)
N2—C121.3839 (11)C13—C161.4951 (12)
C1—C91.5287 (11)C14—H14A0.917 (16)
C2—C31.4834 (12)C14—H14B0.95 (2)
C3—C81.3984 (11)C14—H14C0.950 (17)
C3—C41.4012 (12)C15—H15A0.94 (2)
C4—C51.3888 (13)C15—H15B0.95 (2)
C4—H4A0.990 (18)C15—H15C0.928 (19)
C5—C61.3970 (14)C16—H16A0.957 (16)
C5—H5A0.983 (18)C16—H16B0.953 (18)
C6—C71.3919 (12)C16—H16C0.96 (2)
C11—S1—C1390.17 (4)C1—C9—C10104.67 (6)
C9—O3—H1O3108.5 (16)C11—C10—C9113.28 (7)
C1—N1—C2124.16 (7)C11—C10—H10A112.9 (9)
C1—N1—C14116.45 (7)C9—C10—H10A105.8 (9)
C2—N1—C14119.14 (7)C11—C10—H10B108.8 (9)
C13—N2—C12111.16 (7)C9—C10—H10B108.9 (9)
O1—C1—N1120.95 (8)H10A—C10—H10B107.0 (13)
O1—C1—C9120.27 (8)C12—C11—C10128.32 (8)
N1—C1—C9118.58 (7)C12—C11—S1108.83 (6)
O2—C2—N1120.06 (8)C10—C11—S1122.73 (7)
O2—C2—C3122.83 (8)C11—C12—N2115.80 (8)
N1—C2—C3117.08 (7)C11—C12—C15126.26 (8)
C8—C3—C4120.65 (8)N2—C12—C15117.92 (8)
C8—C3—C2121.30 (7)N2—C13—C16123.95 (8)
C4—C3—C2118.02 (7)N2—C13—S1114.04 (6)
C5—C4—C3119.55 (8)C16—C13—S1122.00 (7)
C5—C4—H4A120.7 (10)N1—C14—H14A108.9 (10)
C3—C4—H4A119.7 (10)N1—C14—H14B107.0 (11)
C4—C5—C6119.94 (8)H14A—C14—H14B106.1 (15)
C4—C5—H5A120.5 (10)N1—C14—H14C108.9 (10)
C6—C5—H5A119.5 (10)H14A—C14—H14C109.9 (14)
C7—C6—C5120.65 (8)H14B—C14—H14C115.9 (16)
C7—C6—H6A119.7 (9)C12—C15—H15A109.7 (12)
C5—C6—H6A119.7 (9)C12—C15—H15B110.7 (13)
C6—C7—C8119.79 (8)H15A—C15—H15B105.4 (17)
C6—C7—H7A117.7 (9)C12—C15—H15C113.7 (12)
C8—C7—H7A122.5 (9)H15A—C15—H15C111.5 (16)
C3—C8—C7119.41 (7)H15B—C15—H15C105.4 (16)
C3—C8—C9119.94 (7)C13—C16—H16A108.5 (10)
C7—C8—C9120.44 (7)C13—C16—H16B110.9 (10)
O3—C9—C8109.07 (7)H16A—C16—H16B111.1 (14)
O3—C9—C1109.61 (7)C13—C16—H16C111.4 (11)
C8—C9—C1112.75 (7)H16A—C16—H16C106.5 (14)
O3—C9—C10110.26 (7)H16B—C16—H16C108.4 (15)
C8—C9—C10110.41 (7)
C2—N1—C1—O1−170.99 (8)C7—C8—C9—C1−160.42 (7)
C14—N1—C1—O13.16 (12)C3—C8—C9—C10−91.86 (9)
C2—N1—C1—C914.15 (12)C7—C8—C9—C1082.90 (9)
C14—N1—C1—C9−171.71 (7)O1—C1—C9—O335.47 (11)
C1—N1—C2—O2−177.44 (8)N1—C1—C9—O3−149.63 (7)
C14—N1—C2—O28.56 (13)O1—C1—C9—C8157.17 (8)
C1—N1—C2—C34.55 (12)N1—C1—C9—C8−27.93 (10)
C14—N1—C2—C3−169.45 (8)O1—C1—C9—C10−82.79 (9)
O2—C2—C3—C8174.08 (8)N1—C1—C9—C1092.12 (9)
N1—C2—C3—C8−7.97 (12)O3—C9—C10—C1164.06 (9)
O2—C2—C3—C4−8.02 (13)C8—C9—C10—C11−56.54 (9)
N1—C2—C3—C4169.93 (8)C1—C9—C10—C11−178.13 (7)
C8—C3—C4—C5−0.41 (13)C9—C10—C11—C1294.19 (11)
C2—C3—C4—C5−178.32 (8)C9—C10—C11—S1−81.38 (9)
C3—C4—C5—C60.84 (14)C13—S1—C11—C120.55 (7)
C4—C5—C6—C7−0.35 (14)C13—S1—C11—C10176.87 (7)
C5—C6—C7—C8−0.59 (13)C10—C11—C12—N2−176.72 (8)
C4—C3—C8—C7−0.53 (12)S1—C11—C12—N2−0.66 (10)
C2—C3—C8—C7177.31 (7)C10—C11—C12—C151.63 (15)
C4—C3—C8—C9174.28 (8)S1—C11—C12—C15177.69 (8)
C2—C3—C8—C9−7.87 (12)C13—N2—C12—C110.41 (11)
C6—C7—C8—C31.02 (13)C13—N2—C12—C15−178.08 (8)
C6—C7—C8—C9−173.77 (8)C12—N2—C13—C16178.59 (8)
C3—C8—C9—O3146.83 (8)C12—N2—C13—S10.04 (10)
C7—C8—C9—O3−38.41 (10)C11—S1—C13—N2−0.35 (7)
C3—C8—C9—C124.83 (10)C11—S1—C13—C16−178.93 (8)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.75 (2)2.20 (2)2.8967 (10)154 (2)
C4—H4A···O1ii0.990 (18)2.350 (18)3.3045 (11)161.7 (13)
C10—H10A···O3iii0.975 (16)2.448 (14)3.2012 (11)133.8 (12)
C16—H16B···O1iv0.953 (17)2.565 (17)3.4698 (12)158.7 (13)
C15—H15B···Cg10.95 (2)2.812 (19)3.4494 (11)125.3 (15)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2531).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010a). Acta Cryst. E66, o724–o725. [PMC free article] [PubMed]
  • Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010b). Acta Cryst. E66, o803–o804. [PMC free article] [PubMed]
  • Griesbeck, A. G., Bondock, S. & Lex, J. (2003). J. Org. Chem.68, 9899–9906. [PubMed]
  • Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82. [PubMed]
  • Malamas, M. S. & Hohman, T. C. (1994). J. Med. Chem.37, 2043–2058. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suau, R. & Villatoro, E. P. de I. (1994). Tetrahedron, 50, 4987–4994.
  • Wang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed.26, 679–689.
  • Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-H. (2004). Org. Lett.6, 4893–4895. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography