PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m434–m435.
Published online 2010 March 24. doi:  10.1107/S1600536810010184
PMCID: PMC2984027

Diazido­bis(propane-1,3-diamine)copper(II)

Abstract

In the title complex, [Cu(N3)2(C3H10N2)2], the CuII ion resides on a centre of symmetry and is in a Jahn–Teller distorted octa­hedral coordination environment comprising two N atoms from azide anions in axial positions and four N atoms from propane-1,3-diamine (tn) ligands in equatorial positions. Inter­molecular N—H(...)N hydrogen bonds produce R 2 1(6), R 2 2(8), R 2 2(12) and R 4 2(8) rings, generating a two-dimensional layer.

Related literature

For related structures, see: Escuer et al. (1997 [triangle]); Gu et al. (2007 [triangle]); Mondal & Mukherjee (2008 [triangle]); Monfort et al. (2000 [triangle]); Shen et al. (2000 [triangle]); Sundberg & Sillanpaa (1993 [triangle]); Sundberg & Uggla (1997 [triangle]); Sundberg et al. (2001 [triangle]); Zhang et al. (2009 [triangle]); Luo et al. (2004 [triangle]); Triki et al. (2005 [triangle]). For graph-set motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m434-scheme1.jpg

Experimental

Crystal data

  • [Cu(N3)2(C3H10N2)2]
  • M r = 295.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m434-efi1.jpg
  • a = 6.6869 (4) Å
  • b = 6.7743 (4) Å
  • c = 8.2445 (8) Å
  • α = 93.296 (3)°
  • β = 98.306 (3)°
  • γ = 119.453 (2)°
  • V = 318.19 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.72 mm−1
  • T = 296 K
  • 0.27 × 0.25 × 0.22 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • 5360 measured reflections
  • 1497 independent reflections
  • 1467 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.077
  • S = 1.01
  • 1497 reflections
  • 95 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010184/om2325sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010184/om2325Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project Strengthening of the Materials Chemistry Laboratory at GCUL.

supplementary crystallographic information

Comment

Recently, metal azide complexes have attracted great attention (Mondal & Mukherjee, 2008; Gu et al., 2007). The azide anion has rich coordination modes (Shen et al., 2000), and many metal-azide complexes have been reported (Monfort et al., 2000). In most of the compounds reported to date, the co-ligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). The 1,3-diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). Previously, the polymorphic dinuclear compound featuring both bridging and terminal azido groups was reported (Luo et al., 2004; Triki et al., 2005). Herein, we report the synthesis and structure of the mononuclear complex with only terminal azido ligands.

The molecular structure and atom-labelling scheme are shown in Fig. 1. The CuII atom is located on a center of symmetry and is coordinated by four N atoms from two tn ligands and two N atoms from two azide anions. The geometry around the CuII ion (Table 1) is that of a distorted octahedron, the equatorial plane of which (N1/N2/N1i/N2i) is formed by four amino N atoms [symmetry code: (i) 2-x, -y, -z]. The axial positions in the octahedron are occupied by two N atoms (N4 and N4i). The Cu1—N4 distance is longer than the corresponding distances in related structures (Luo et al., 2004; Triki et al., 2005). This elongation can be attributed to the static Jahn-Teller effect. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg & Sillanpaa, 1993; Sundberg & Uggla, 1997). The Cu1—N1 and Cu1—N2 bond lengths are very similar to those in the previously reported Bis(4-aminobenzenesulfonato-κO)bis(propane-1,3-diamine-κ2N,\ N')copper(II) dihydrate (Zhang et al., 2009).

Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H3, to atom N3ii so forming a C(6) (Bernstein et al., 1995) chain running parallel to the [110] direction. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H4, to atom N3iii so forming a C(6) chain running parallel to the [-100] direction. Similarly, amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H1, to atom N3i so forming a C(6) chain running parallel to the [100] direction. Amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H2, to atom N4ii so forming a C(4) chain running parallel to the [110] direction. The combination of C(4) and C(6) chains produce R21(6), R22(8), R22(12) and R42(8) rings (Fig. 2).

Experimental

Copper(II) sulphate (0.16 g, 1.0 mmol) was dissolved in methanol (20 ml). Sodium azide (0.134 g, 2.0 mmol) and 1,3-diaminopropane(0.148 g, 2.0 mmol) were added and the mixture refluxed for 3 hours. A blue solution formed, which was filtered. After a few days, blue blocks were obtained from the methanol filtrate.

Refinement

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms. Amino H atoms were located in difference maps and refined subject to a DFIX restraint of N—H = 0.87 (2) Å.

Figures

Fig. 1.
A view of one molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 2-x, -y, -z.]
Fig. 2.
Part of the crystal structure showing the formation of R21(6), R22(8), R22(12) and R42(8) rings. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2).

Crystal data

[Cu(N3)2(C3H10N2)2]Z = 1
Mr = 295.86F(000) = 155
Triclinic, P1Dx = 1.544 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6869 (4) ÅCell parameters from 4650 reflections
b = 6.7743 (4) Åθ = 3.5–28.6°
c = 8.2445 (8) ŵ = 1.72 mm1
α = 93.296 (3)°T = 296 K
β = 98.306 (3)°Blocks, blue
γ = 119.453 (2)°0.27 × 0.25 × 0.22 mm
V = 318.19 (4) Å3

Data collection

Bruker Kappa APEXII diffractometer1467 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
graphiteθmax = 28.0°, θmin = 2.5°
[var phi] and ω scansh = −8→5
5360 measured reflectionsk = −8→8
1497 independent reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0676P)2 + 0.0082P] where P = (Fo2 + 2Fc2)/3
1497 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.2523 (3)0.1281 (3)0.3530 (2)0.0388 (4)
H1A1.39290.16120.43000.047*
H1B1.1251−0.01750.37000.047*
C21.1953 (3)0.3138 (3)0.3892 (2)0.0401 (4)
H2A1.32070.45740.36790.048*
H2B1.19160.33120.50620.048*
C30.9655 (3)0.2714 (3)0.2899 (2)0.0400 (4)
H3A0.83810.13110.31360.048*
H3B0.94120.39640.32330.048*
N11.2889 (2)0.1090 (2)0.18062 (17)0.0313 (3)
H11.338 (3)0.017 (3)0.173 (2)0.029 (5)*
H21.398 (3)0.241 (3)0.169 (3)0.034 (5)*
N20.9619 (2)0.2524 (2)0.10959 (17)0.0317 (3)
H31.078 (3)0.368 (3)0.093 (3)0.037 (5)*
H40.855 (3)0.261 (4)0.060 (3)0.040 (6)*
N31.5787 (3)0.2474 (3)−0.1503 (2)0.0483 (4)
N41.2752 (3)0.3278 (3)−0.1626 (2)0.0446 (3)
N51.4271 (2)0.2879 (2)−0.15632 (16)0.0310 (3)
Cu11.00000.00000.00000.02769 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0421 (9)0.0354 (8)0.0248 (8)0.0114 (7)−0.0028 (6)0.0058 (6)
C20.0409 (9)0.0375 (8)0.0246 (7)0.0085 (7)0.0031 (6)−0.0030 (6)
C30.0374 (8)0.0407 (9)0.0331 (8)0.0141 (7)0.0078 (7)−0.0065 (7)
N10.0284 (6)0.0309 (6)0.0293 (6)0.0132 (5)−0.0013 (5)0.0012 (5)
N20.0278 (6)0.0320 (7)0.0304 (7)0.0136 (5)−0.0001 (5)−0.0004 (5)
N30.0379 (8)0.0398 (8)0.0659 (11)0.0211 (7)0.0029 (7)0.0040 (7)
N40.0365 (7)0.0575 (9)0.0397 (8)0.0255 (7)0.0029 (6)0.0027 (7)
N50.0288 (6)0.0254 (6)0.0294 (6)0.0069 (5)0.0043 (5)0.0056 (5)
Cu10.02519 (16)0.03367 (17)0.02129 (17)0.01466 (12)−0.00046 (10)−0.00212 (10)

Geometric parameters (Å, °)

C1—N11.486 (2)N1—H10.843 (14)
C1—C21.509 (3)N1—H20.852 (15)
C1—H1A0.9700N2—Cu12.0302 (13)
C1—H1B0.9700N2—H30.826 (16)
C2—C31.513 (2)N2—H40.801 (15)
C2—H2A0.9700N3—N51.169 (2)
C2—H2B0.9700N4—N51.168 (2)
C3—N21.480 (2)N4—Cu12.6740 (17)
C3—H3A0.9700Cu1—N2i2.0302 (13)
C3—H3B0.9700Cu1—N1i2.0333 (13)
N1—Cu12.0333 (13)
N1—C1—C2111.99 (13)C1—N1—H2106.5 (15)
N1—C1—H1A109.2Cu1—N1—H2110.7 (14)
C2—C1—H1A109.2H1—N1—H2108.1 (19)
N1—C1—H1B109.2C3—N2—Cu1118.90 (11)
C2—C1—H1B109.2C3—N2—H3108.0 (15)
H1A—C1—H1B107.9Cu1—N2—H3101.3 (15)
C1—C2—C3114.90 (15)C3—N2—H4110.7 (17)
C1—C2—H2A108.5Cu1—N2—H4113.0 (17)
C3—C2—H2A108.5H3—N2—H4103 (2)
C1—C2—H2B108.5N5—N4—Cu199.05 (12)
C3—C2—H2B108.5N4—N5—N3179.8 (2)
H2A—C2—H2B107.5N2—Cu1—N2i180.00 (7)
N2—C3—C2111.68 (13)N2—Cu1—N187.19 (5)
N2—C3—H3A109.3N2i—Cu1—N192.81 (5)
C2—C3—H3A109.3N2—Cu1—N1i92.81 (5)
N2—C3—H3B109.3N2i—Cu1—N1i87.19 (5)
C2—C3—H3B109.3N1—Cu1—N1i180.00 (6)
H3A—C3—H3B107.9N2—Cu1—N483.92 (5)
C1—N1—Cu1115.28 (10)N2i—Cu1—N496.08 (5)
C1—N1—H1107.0 (13)N1—Cu1—N487.19 (5)
Cu1—N1—H1109.1 (14)N1i—Cu1—N492.81 (5)
N1—C1—C2—C364.96 (19)C1—N1—Cu1—N252.35 (11)
C1—C2—C3—N2−60.6 (2)C1—N1—Cu1—N2i−127.65 (11)
C2—C1—N1—Cu1−66.39 (15)C1—N1—Cu1—N4136.40 (11)
C2—C3—N2—Cu160.49 (17)N5—N4—Cu1—N2137.75 (12)
C3—N2—Cu1—N1−50.92 (12)N5—N4—Cu1—N2i−42.25 (12)
C3—N2—Cu1—N1i129.08 (12)N5—N4—Cu1—N150.28 (12)
C3—N2—Cu1—N4−138.39 (12)N5—N4—Cu1—N1i−129.72 (12)

Symmetry codes: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N3ii0.84 (1)2.12 (2)2.962 (2)173 (2)
N1—H2···N4iii0.85 (2)2.66 (2)3.511 (2)173 (2)
N2—H3···N3iii0.83 (2)2.44 (2)3.220 (2)158 (2)
N2—H4···N3iv0.80 (2)2.31 (2)3.078 (2)162 (2)

Symmetry codes: (ii) −x+3, −y, −z; (iii) −x+3, −y+1, −z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2325).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem.36, 1233–1236. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem.46, 9522–9524. [PubMed]
  • Luo, J., Zhou, X.-G., Gao, S., Weng, L.-H., Shao, Z.-H., Zhang, C.-M., Li, Y.-R., Zhang, J. & Cai, R.-F. (2004). Polyhedron, 23, 1243–1248.
  • Mondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem.47, 4215–4225. [PubMed]
  • Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed.39, 191–193. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed.39, 3633–3635. [PubMed]
  • Sundberg, M. R., Kivekas, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217.
  • Sundberg, M. R. & Sillanpaa, R. (1993). Acta Chem. Scand.47, 1173–1178.
  • Sundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259–265.
  • Triki, S., Garcia, C. J. G., Ruiz, E. & Pala, J. S. (2005). Inorg. Chem.44, 5501–5508. [PubMed]
  • Zhang, K.-J., Meng, X.-G. & Li, X.-L. (2009). Acta Cryst. E65, m1678–m1679. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography