PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o966–o967.
Published online 2010 March 27. doi:  10.1107/S1600536810010718
PMCID: PMC2984026

2-(4-Bromo­phen­yl)-6-methyl-4H-1-benzopyran-4-one (4′-bromo-6-methyl­flavone)

Abstract

Planar (r.m.s. deviation from the plane through all non-H atoms = 0.036 Å) mol­ecules of the title compound, C16H11BrO2, form a layered structure stabilized by C—H(...)O hydrogen bonds and π–π stacking inter­actions.

Related literature

For background information on flavones and their properties, see: Hsiao et al. (2007 [triangle]); Manthey et al. (2001 [triangle]); Middleton et al. (2000 [triangle]). Millot et al. (2009 [triangle]); Moulari et al. (2006 [triangle]); Ren et al. (2003 [triangle]); Moon et al. (2007 [triangle]). For related structures, see: Kumar et al. (1998 [triangle]); Artali et al. (2003 [triangle]); Białońska et al. (2007 [triangle]); Ghalib et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o966-scheme1.jpg

Experimental

Crystal data

  • C16H11BrO2
  • M r = 315.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o966-efi1.jpg
  • a = 13.759 (3) Å
  • b = 6.873 (2) Å
  • c = 13.460 (2) Å
  • β = 90.25 (3)°
  • V = 1272.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.22 mm−1
  • T = 100 K
  • 0.31 × 0.29 × 0.04 mm

Data collection

  • Kuma KM-4-CCD diffractometer
  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009 [triangle]); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995 [triangle])] T min = 0.474, T max = 0.893
  • 25822 measured reflections
  • 5962 independent reflections
  • 3659 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.070
  • S = 0.88
  • 5962 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Bruker, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
π–π inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010718/ds2025sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010718/ds2025Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Seeds, fruit skin, bark and flowers of most plants contain significant amount of flavonoids. They have been classified to one subclass of flavonoids according to their chemical structures (Hsiao et al., 2007). Several naturally occurring and synthetic flavones are well know in respect to their anti-oxidant, anti-neoplastic, anti-malarial, anti-inflammatory and insecticidal activity (Manthey et al., 2001; Millot et al., 2009; Moulari et al., 2006). Halogenoflavones have been used as precursors for the synthesis of a variety of bioactive organic compounds including biflavodoids (Ren et al., 2003; Moon et al., 2007). The title compound is a flavone derivative with 4'-bromo and 6-methyl substituents in the biologically active region (Scheme) (Middleton et al., 2000).

Crystal structures of the following related flavones were reported: 7-hydroxyflavone monohydrate (Kumar et al., 1998), 6-(3-hydroxy-3-methylbut-1-ynyl)-flavone and 6-(3-methylbut-3-en-1-ynyl)-flavone (Artali et al., 2003), 2-phenyl-6-hydroxy-4H-1-benzopyran-4-one (6-hydroxyflavone) (Białońska et al., 2007), 3,5,4'-trihydroxy-6,7-dimethoxy-flavone (Eupalitin) (Ghalib et al., 2010).

Structure of 2-(4-bromophenyl)-6-methyl-4H-1-benzopyran-4-one with the numbering scheme employed is presented in Fig. 1 Molecules of the titled compound form ribbons stabilized by π–π stacking interactions exteded along the [010] direction (Table 2). The neighboring ribbons are linked by C—H···O hydrogen bonds, in which the carbonyl O4 atom is their acceptor (Table 1). The resulting layers perpendicular to the [100] direction (Fig. 2).

Experimental

The title compound was obtained according to the procedure: A mixture of the para-cresol 1,08 g (10,0 mmol) and 3,4'-dibromopropiophenone 0,59 g (2,0 mmol) in BF3.OEt2 (20 ml) was heated at 60 °C and stirred for 8 h. The products of reaction were extracted from the mixtures with chloroform. Titled product was separated by column chromatography on silica gel with hexane/methyl chloride/acetone (10:1:1 v/v/v) as eluent (Scheme). Crystals suitable for X-ray structure analysis were obtained by slow evaporation from the eluent at room temperature. Structure of the titled product was confirmed by means of the 1H NMR and 13 C NMR spectra. 1H NMR (600 MHz, CDCl3 δ, p.p.m.): 6.81 (s, 1H, H3), 7.48 (d, 1H, J=8.56 Hz, H8), 7.54 (dd, 1H, J=8.56, 2.12 Hz, H7), 7.68 (m, 2H Wh=8.60 Hz, H5' and H7'), 7.80 (m, 2H, Wh=8.60 Hz, H2' and H6'), 8.04 (d, 1H, J=2.12 Hz, H-5). 13 C NMR (150 MHz, CDCl3 δ, p.p.m.): 20.98 (-CH3); 107.55 (C3); 117.83 (C8); 123.56 (C10); 125.13 (C5); 126.25 (C6); 127.71 (C3' i C5'); 130.84 (C1'); 132.35 (C2' i C6'); 135.21 (C7); 135.47 (C4'); 154.48 (C9) 162.23 (C2); 178.48 (C4).

Refinement

Non-hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were placed at calculated positions and were treated as riding atoms, with C—H distances of 0.95 - 1.00 Å.

Figures

Fig. 1.
Selected view of 4'-bromo-6-methyloflavone with the numbering scheme employed.
Fig. 2.
Molecular packing of 4'-bromo-6-methyloflavone.

Crystal data

C16H11BrO2F(000) = 632
Mr = 315.16Dx = 1.645 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11464 reflections
a = 13.759 (3) Åθ = 3.0–36.9°
b = 6.873 (2) ŵ = 3.22 mm1
c = 13.460 (2) ÅT = 100 K
β = 90.25 (3)°Plate, colorless
V = 1272.8 (5) Å30.31 × 0.29 × 0.04 mm
Z = 4

Data collection

Kuma KM-4-CCD diffractometer5962 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
graphiteRint = 0.047
ω scanθmax = 36.0°, θmin = 3.0°
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]h = −22→22
Tmin = 0.474, Tmax = 0.893k = −11→10
25822 measured reflectionsl = −21→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.88w = 1/[σ2(Fo2) + (0.0385P)2] where P = (Fo2 + 2Fc2)/3
5962 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.42 (release 29-05-2009 CrysAlis171 .NET) (compiled May 29 2009,17:40:42) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.122301 (8)0.12666 (2)0.048602 (10)0.02299 (4)
O10.59232 (6)0.12638 (15)0.20324 (6)0.01526 (15)
C20.51619 (8)0.12091 (19)0.26748 (8)0.01346 (19)
C30.52887 (8)0.1170 (2)0.36736 (8)0.0158 (2)
H3A0.47330.11380.40890.019*
O40.63780 (7)0.11445 (16)0.50391 (6)0.02132 (18)
C40.62442 (8)0.1176 (2)0.41278 (9)0.0152 (2)
C50.80289 (8)0.1197 (2)0.37337 (9)0.0158 (2)
H5A0.81730.11600.44240.019*
C60.87838 (8)0.1235 (2)0.30587 (9)0.0173 (2)
C70.85504 (9)0.1311 (2)0.20364 (9)0.0188 (2)
H7A0.90620.13480.15650.023*
C80.76018 (9)0.1335 (2)0.17014 (9)0.0179 (2)
H8A0.74590.13960.10110.021*
C90.70523 (8)0.1212 (2)0.34182 (8)0.01366 (19)
C100.68548 (8)0.1267 (2)0.24016 (9)0.01469 (19)
C110.42181 (8)0.12034 (19)0.21497 (8)0.01378 (19)
C120.41819 (9)0.1370 (2)0.11092 (9)0.0170 (2)
H12A0.47680.14770.07430.020*
C130.32929 (9)0.1380 (2)0.06124 (9)0.0181 (2)
H13A0.32690.1486−0.00910.022*
C140.24418 (8)0.1234 (2)0.11563 (9)0.0169 (2)
C150.24576 (9)0.1070 (2)0.21903 (10)0.0184 (2)
H15A0.18690.09800.25530.022*
C160.33448 (9)0.1041 (2)0.26785 (9)0.0166 (2)
H16A0.33630.09100.33810.020*
C170.98418 (9)0.1213 (2)0.33957 (10)0.0217 (2)
H17A0.98710.11600.41230.033*
H17B1.01670.23960.31630.033*
H17C1.01680.00690.31180.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.01513 (6)0.02745 (7)0.02633 (7)0.00270 (6)−0.00771 (4)−0.00266 (6)
O10.0108 (3)0.0227 (4)0.0123 (3)−0.0008 (4)−0.0008 (3)0.0003 (4)
C20.0130 (4)0.0128 (5)0.0145 (5)−0.0002 (5)0.0009 (4)0.0007 (5)
C30.0135 (4)0.0200 (5)0.0139 (5)−0.0007 (5)0.0013 (4)0.0001 (5)
O40.0200 (4)0.0308 (5)0.0132 (4)−0.0045 (4)−0.0010 (3)0.0008 (4)
C40.0155 (5)0.0155 (5)0.0145 (5)−0.0015 (5)−0.0006 (4)0.0003 (5)
C50.0146 (5)0.0159 (5)0.0169 (5)−0.0008 (5)−0.0031 (4)−0.0006 (5)
C60.0128 (4)0.0177 (5)0.0215 (5)−0.0009 (5)−0.0020 (4)−0.0009 (5)
C70.0137 (5)0.0232 (6)0.0195 (5)−0.0004 (5)0.0019 (4)−0.0014 (6)
C80.0147 (5)0.0239 (6)0.0150 (5)−0.0004 (5)0.0004 (4)−0.0012 (5)
C90.0124 (4)0.0143 (5)0.0144 (5)−0.0010 (5)−0.0005 (4)0.0002 (5)
C100.0115 (4)0.0157 (5)0.0168 (5)−0.0008 (5)−0.0012 (4)−0.0007 (5)
C110.0122 (4)0.0138 (5)0.0154 (5)−0.0001 (5)−0.0015 (4)−0.0002 (5)
C120.0149 (5)0.0191 (6)0.0171 (5)−0.0007 (5)−0.0005 (4)0.0017 (5)
C130.0178 (5)0.0195 (6)0.0170 (5)−0.0008 (5)−0.0031 (4)0.0008 (5)
C140.0144 (5)0.0160 (5)0.0203 (5)0.0017 (5)−0.0046 (4)−0.0008 (5)
C150.0139 (5)0.0196 (6)0.0216 (6)0.0003 (5)−0.0001 (4)−0.0012 (5)
C160.0138 (5)0.0198 (6)0.0163 (5)−0.0001 (5)0.0000 (4)−0.0002 (5)
C170.0140 (5)0.0270 (6)0.0240 (6)0.0002 (6)−0.0036 (4)−0.0022 (6)

Geometric parameters (Å, °)

Br—C141.9008 (13)C8—C101.3983 (16)
O1—C21.3617 (14)C8—H8A0.9500
O1—C101.3727 (14)C9—C101.3944 (16)
C2—C31.3551 (16)C11—C161.4036 (17)
C2—C111.4757 (16)C11—C121.4059 (16)
C3—C41.4475 (17)C12—C131.3914 (17)
C3—H3A0.9500C12—H12A0.9500
O4—C41.2397 (15)C13—C141.3875 (17)
C4—C91.4692 (16)C13—H13A0.9500
C5—C61.3832 (17)C14—C151.3964 (18)
C5—C91.4075 (16)C15—C161.3839 (17)
C5—H5A0.9500C15—H15A0.9500
C6—C71.4126 (18)C16—H16A0.9500
C6—C171.5228 (17)C17—H17A0.9800
C7—C81.3792 (17)C17—H17B0.9800
C7—H7A0.9500C17—H17C0.9800
C2—O1—C10119.33 (9)O1—C10—C8116.36 (10)
C3—C2—O1122.30 (10)C9—C10—C8121.44 (10)
C3—C2—C11125.75 (11)C16—C11—C12119.01 (11)
O1—C2—C11111.95 (9)C16—C11—C2120.72 (10)
C2—C3—C4122.12 (11)C12—C11—C2120.27 (10)
C2—C3—H3A118.9C13—C12—C11120.42 (11)
C4—C3—H3A118.9C13—C12—H12A119.8
O4—C4—C3123.27 (11)C11—C12—H12A119.8
O4—C4—C9122.28 (11)C14—C13—C12119.23 (11)
C3—C4—C9114.45 (10)C14—C13—H13A120.4
C6—C5—C9121.35 (11)C12—C13—H13A120.4
C6—C5—H5A119.3C13—C14—C15121.48 (11)
C9—C5—H5A119.3C13—C14—Br119.58 (9)
C5—C6—C7118.19 (11)C15—C14—Br118.94 (9)
C5—C6—C17121.59 (11)C16—C15—C14118.97 (12)
C7—C6—C17120.23 (11)C16—C15—H15A120.5
C8—C7—C6121.99 (11)C14—C15—H15A120.5
C8—C7—H7A119.0C15—C16—C11120.88 (12)
C6—C7—H7A119.0C15—C16—H16A119.6
C7—C8—C10118.46 (11)C11—C16—H16A119.6
C7—C8—H8A120.8C6—C17—H17A109.5
C10—C8—H8A120.8C6—C17—H17B109.5
C10—C9—C5118.56 (10)H17A—C17—H17B109.5
C10—C9—C4119.58 (10)C6—C17—H17C109.5
C5—C9—C4121.87 (10)H17A—C17—H17C109.5
O1—C10—C9122.20 (10)H17B—C17—H17C109.5
C10—O1—C2—C30.45 (19)C4—C9—C10—O1−0.9 (2)
C10—O1—C2—C11−179.69 (13)C5—C9—C10—C8−0.9 (2)
O1—C2—C3—C4−0.3 (2)C4—C9—C10—C8178.91 (13)
C11—C2—C3—C4179.90 (13)C7—C8—C10—O1−179.04 (14)
C2—C3—C4—O4179.89 (13)C7—C8—C10—C91.2 (2)
C2—C3—C4—C9−0.5 (2)C3—C2—C11—C16−3.7 (2)
C9—C5—C6—C70.7 (2)O1—C2—C11—C16176.44 (12)
C9—C5—C6—C17−179.82 (14)C3—C2—C11—C12175.99 (13)
C5—C6—C7—C8−0.4 (2)O1—C2—C11—C12−3.86 (18)
C17—C6—C7—C8−179.95 (14)C16—C11—C12—C130.2 (2)
C6—C7—C8—C10−0.5 (2)C2—C11—C12—C13−179.51 (13)
C6—C5—C9—C100.0 (2)C11—C12—C13—C140.3 (2)
C6—C5—C9—C4−179.84 (13)C12—C13—C14—C15−0.2 (2)
O4—C4—C9—C10−179.34 (13)C12—C13—C14—Br179.51 (11)
C3—C4—C9—C101.0 (2)C13—C14—C15—C16−0.4 (2)
O4—C4—C9—C50.5 (2)Br—C14—C15—C16179.84 (11)
C3—C4—C9—C5−179.17 (13)C14—C15—C16—C111.0 (2)
C2—O1—C10—C90.1 (2)C12—C11—C16—C15−0.8 (2)
C2—O1—C10—C8−179.67 (12)C2—C11—C16—C15178.85 (14)
C5—C9—C10—O1179.28 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···O4i0.952.493.2904 (17)142
C16—H16A···O4i0.952.583.4394 (16)151

Symmetry codes: (i) −x+1, −y, −z+1.

Table 2 π–π interactions (Å, °).

Cg(1) and Cg(2) are the centroids of the C5–C10 and C11–C16 rings, respectively.

Cg(I)Cg(J)CgCgAlphaCgI_perpCgJ_PerpSlippage
Cg(1)Cg(2)i3.8957.13 (3)3.579 (2)-3.430 (2)1.84
Cg(1)Cg(2)ii3.8437.13 (3)-3.266 (2)3.438 (2)1.72

Notes: CgCg = distance between ring centroids; Alpha = dihedral angle between planes I and J; CgI_Perp = perpendicular distance of Cg(I) on ring J; CgJ_Perp = perpendicular distance of Cg(J) on ring I; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on Ring I. Symmetry codes: (i) 1-x, -0.5+y, 0.5-z, (ii) 1-x, 0.5+y, 0.5-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2025).

References

  • Artali, R., Barili, P. L., Bombieri, G., Re, P. D., Marchini, N., Meneghetti, F. & Valenti, P. (2003). Farmaco, 58, 875–881. [PubMed]
  • Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007). Acta Cryst. E63, o430–o431.
  • Bruker (1999). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Ghalib, R. M., Mehdi, S. H., Hashim, R., Sulaiman, O., Valkonen, A., Rissanen, K. & Trifunović, S. R. (2010). J. Chem. Crystallogr. doi, 10,1007/s10870-010-9687-9.
  • Hsiao, Y.-C., Kuo, W.-H., Chen, P.-N., Chang, H.-R., Lin, T.-H., Yang, W.-E., Hsieh, Y.-S. & Chu, S.-C. (2007). Chem. Biol. Interact.167, 193–206. [PubMed]
  • Kumar, S., Ramanathan, T., Subramanian, K. & Steiner, T. (1998). J. Chem. Crystallogr.28, 931–933.
  • Manthey, J. A., Grohmann, K. & Guthrie, N. (2001). Curr. Med. Chem.8, 135–153. [PubMed]
  • Middleton, E. Jr, Kandaswami, C. & Theoharides, T. C. (2000). Pharmacol. Rev.52, 673–751. [PubMed]
  • Millot, M., Tomasi, S., Studzinska, S., Rouaud, I. & Boustie, J. (2009). J. Nat. Prod.72, 2177–2180. [PubMed]
  • Moon, T. C., Quan, Z., Kim, J., Kim, H. P., Kudo, I., Murakami, M., Park, H. & Chang, H. W. (2007). Bioorg. Med. Chem.15, 7138–7143. [PubMed]
  • Moulari, B., Pellequer, Y., Lboutounne, H., Girard, C., Chaumont, J. P., Millet, J. & Muyard, F. (2006). J. Ethnopharmacol.106, 272–278. [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Yarnton, England.
  • Ren, W., Qiao, Z., Wang, H., Zhu, L. & Zhang, L. (2003). Med. Res. Rev.23, 519–534. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography