PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o812.
Published online 2010 March 13. doi:  10.1107/S1600536810008433
PMCID: PMC2984023

2-(1,3-Thia­zol-4-yl)benzimidazolium nitrate monohydrate

Abstract

In the title compound, C10H8N3S+·NO3 ·H2O, one of the N atoms of the benzimidazole unit is protonated, unlike than that in the thia­zole group. This protonation leads to equalization of the bond angles at the two N atoms of the benzimidazole group. The benzimidazole and thia­zole systems are almost coplanar, forming a dihedral angle of 0.5 (2)°. In the crystal, the nitrate anion and water mol­ecule bridge the thia­bendazolium cations through N—H(...)O and O—H(...)O hydrogen bonds, leading to a supra­molecular network based on an infinite one-dimensional chain using [001] as base vector.

Related literature

For the anti­viral action and anthelmintic activity of substituted benzimidazoles, see: Goodgame et al. (1985 [triangle]). Related structures have been reported: thia­bendazole (Trus & Marsh, 1973 [triangle]); thia­bendazolium nitrate (Murugesan et al., 1998 [triangle]; Devereux et al., 2004 [triangle]); thia­bendazolium perchlorate (Stanley et al., 2002 [triangle]); thia­bendazolium halide dihydrates (Prabakaran et al., 2000 [triangle]). For structures of transition metal complexes bearing thia­bendazole as ligand, see: Kowala & Wunderlich (1973 [triangle]); Udupa & Krebs (1979 [triangle]); Rong et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o812-scheme1.jpg

Experimental

Crystal data

  • C10H8N3S+·NO3 ·H2O
  • M r = 282.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o812-efi1.jpg
  • a = 7.6140 (3) Å
  • b = 16.3130 (5) Å
  • c = 10.0990 (3) Å
  • β = 102.731 (4)°
  • V = 1223.53 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 298 K
  • 0.54 × 0.39 × 0.26 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini Mo) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.920, T max = 0.952
  • 5590 measured reflections
  • 2426 independent reflections
  • 1859 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.100
  • S = 1.08
  • 2426 reflections
  • 184 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008433/bh2274sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008433/bh2274Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the project PAPIIT UNAM-DGAPA for support via project No. IN206707 and CONACyT project VI-060894 CB-2006–1.

supplementary crystallographic information

Comment

Substituted benzimidazoles show antiviral action and anthelmintic activity. This has been attributed to their metal-chelating ability (Goodgame et al., 1985). Thiabendazole is a broad-spectrum anthelmintic compound useful in the treatment of human and animal parasitic diseases.

The crystal structures of thiabendazole (Trus & Marsh, 1973), thiabendazolium nitrate (Murugesan et al., 1998; Devereux et al., 2004), thiabendazolium perchlorate (Stanley et al., 2002), thiabendazolium halide dihydrates (Prabakaran et al., 2000), and its complexes with cobalt (Kowala & Wunderlich, 1973), copper (Udupa & Krebs, 1979) and platinum (Rong et al., 1991) have been reported. The present paper deals with the crystal structure of a protonated thiabendazole moiety, namely, thiabendazolium nitrate hydrate.

The asymmetric unit of the title salt contains one protonated 2-(4-thiazolyl)-1H-benzimidazol-1-ium cation, one nitrate anion and one water molecule, shown in Fig. 1. The cation is protonated on the benzimidazole iminic nitrogen atom, resulting in delocalization of the double bond over the N—C—N fragment, with C—N distances of 1.326 (2) and 1.327 (2) Å (Table 1), in contrast to the benzimidazole group in the crystal structure of free thiabendazole, where the two bond lengths are different (Trus & Marsh, 1973).

The C—C bond connecting the two ring systems has a length of 1.445 (2) Å, which is the same bond length, within experimental error, as that in neutral thiabendazole. This value suggests appreciable delocalization across this bond (Prabakaran et al., 2000).

The benzimidazole and thiazole systems are coplanar, the dihedral angle between them is 0.5 (2)°.

The thiabendazole cation is involved in a pair of N—H···O, O—H···O hydrogen bonds [N1···O1w: 2.748 (2) Å and N3···O17: 2.791 (2) Å], while the nitrate anion and water molecule display hydrogen bonding (Table 2), which lead to an infinite one-dimensional chain with base vector [0 0 1].

Experimental

The reaction mixture of 2-(4-thiazolyl)benzimidazole (0.3686 g, 1.83 mmol) with [Fe(DMSO)6]NO3 (0.3549 g, 0.5 mmol) in acetonitrile (60 ml) was refluxed for 10 h. It yielded pale-yellow crystals of (C10H8N3S)(NO3).H2O as a byproduct when the solution was left to stand at room temperature for a couple of days.

Refinement

H atoms bonded to N and O atoms were located in difference maps and were refined with free coordinates and Uiso(H) = 1.5Ueq(N) and 1.2Ueq(O). H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title salt, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C10H8N3S+·NO3·H2OF(000) = 584
Mr = 282.28Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3277 reflections
a = 7.6140 (3) Åθ = 3.2–26.0°
b = 16.3130 (5) ŵ = 0.28 mm1
c = 10.0990 (3) ÅT = 298 K
β = 102.731 (4)°Prism, pale yellow
V = 1223.53 (7) Å30.54 × 0.39 × 0.26 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini Mo) detector2426 independent reflections
Radiation source: X-ray1859 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 10.4685 pixels mm-1θmax = 26.1°, θmin = 3.2°
ω scansh = −9→7
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)k = −19→20
Tmin = 0.920, Tmax = 0.952l = −12→10
5590 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0565P)2 + 0.057P] where P = (Fo2 + 2Fc2)/3
2426 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.21 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.7417 (2)−0.01688 (10)0.01259 (16)0.0385 (4)
C40.8456 (2)0.11013 (10)0.02130 (18)0.0416 (4)
C50.8891 (3)0.18937 (11)−0.0082 (2)0.0542 (5)
H50.85780.2102−0.0960.065*
C60.9813 (3)0.23603 (12)0.0988 (2)0.0606 (5)
H61.01320.28970.0840.073*
C71.0266 (2)0.20260 (12)0.2293 (2)0.0576 (5)
H71.09230.23460.29920.069*
C80.9784 (2)0.12463 (12)0.25917 (19)0.0517 (5)
H81.00620.10420.34730.062*
C90.8865 (2)0.07819 (10)0.15118 (16)0.0416 (4)
C100.6544 (2)−0.09278 (9)−0.03838 (16)0.0387 (4)
C110.5761 (2)−0.10865 (11)−0.17031 (17)0.0467 (4)
H110.5695−0.0718−0.24150.056*
C130.5667 (3)−0.21780 (11)−0.01579 (18)0.0507 (4)
H130.5495−0.26670.0270.061*
N10.81909 (19)−0.00164 (8)0.14122 (14)0.0403 (3)
N30.7559 (2)0.04857 (9)−0.06229 (15)0.0434 (4)
N140.6484 (2)−0.15582 (9)0.05111 (15)0.0487 (4)
N150.6705 (2)0.07673 (9)0.58671 (15)0.0502 (4)
O1W0.2195 (2)0.07887 (10)0.62504 (15)0.0621 (4)
O160.7817 (3)0.02340 (12)0.61835 (19)0.1061 (7)
O170.6049 (2)0.10779 (9)0.67836 (14)0.0724 (4)
O180.6223 (3)0.09795 (10)0.47009 (14)0.0989 (6)
S120.49270 (6)−0.20485 (3)−0.18646 (4)0.05076 (18)
H2D0.329 (3)0.0937 (14)0.647 (2)0.076*
H1D0.205 (3)0.0427 (15)0.574 (2)0.076*
H1N0.814 (3)−0.0313 (12)0.210 (2)0.061*
H3N0.722 (3)0.0536 (13)−0.145 (2)0.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0382 (9)0.0415 (9)0.0363 (9)0.0061 (7)0.0094 (7)0.0024 (7)
C40.0385 (9)0.0433 (9)0.0447 (9)−0.0003 (7)0.0131 (7)0.0001 (7)
C50.0536 (11)0.0513 (11)0.0609 (12)−0.0058 (8)0.0193 (10)0.0072 (9)
C60.0486 (11)0.0507 (11)0.0877 (16)−0.0080 (9)0.0261 (11)−0.0116 (11)
C70.0421 (10)0.0577 (12)0.0726 (13)−0.0018 (8)0.0119 (9)−0.0247 (10)
C80.0462 (10)0.0564 (11)0.0496 (10)0.0067 (8)0.0041 (8)−0.0116 (9)
C90.0379 (9)0.0435 (9)0.0437 (9)0.0060 (7)0.0100 (7)−0.0020 (8)
C100.0369 (9)0.0413 (9)0.0385 (9)0.0043 (7)0.0098 (7)0.0007 (7)
C110.0543 (11)0.0477 (10)0.0371 (9)0.0004 (8)0.0080 (8)0.0035 (7)
C130.0614 (11)0.0457 (10)0.0452 (10)−0.0069 (8)0.0124 (9)0.0037 (8)
N10.0464 (8)0.0403 (8)0.0337 (7)0.0064 (6)0.0076 (6)0.0026 (6)
N30.0473 (9)0.0488 (8)0.0340 (7)−0.0021 (6)0.0086 (7)0.0057 (7)
N140.0591 (9)0.0464 (8)0.0390 (8)−0.0046 (7)0.0070 (7)0.0044 (7)
N150.0613 (10)0.0447 (8)0.0414 (8)0.0024 (7)0.0044 (7)0.0033 (7)
O1W0.0733 (10)0.0623 (9)0.0512 (8)0.0057 (8)0.0149 (8)0.0038 (6)
O160.1230 (16)0.1025 (14)0.0874 (12)0.0633 (12)0.0118 (11)0.0130 (10)
O170.0828 (11)0.0859 (11)0.0469 (8)0.0184 (8)0.0104 (7)−0.0106 (7)
O180.1616 (18)0.0918 (12)0.0357 (8)0.0366 (11)0.0057 (10)0.0079 (7)
S120.0541 (3)0.0533 (3)0.0437 (3)−0.0063 (2)0.0082 (2)−0.0065 (2)

Geometric parameters (Å, °)

N1—C21.326 (2)C8—C91.385 (2)
N1—C91.395 (2)C8—H80.93
N3—C21.327 (2)C10—C111.359 (2)
N3—C41.390 (2)C11—S121.6874 (18)
N14—C101.376 (2)C11—H110.93
N14—C131.296 (2)C13—S121.7045 (19)
C2—C101.445 (2)C13—H130.93
C4—C91.382 (2)N1—H1N0.85 (2)
C4—C51.383 (2)N3—H3N0.82 (2)
C5—C61.380 (3)N15—O181.205 (2)
C5—H50.93N15—O161.207 (2)
C6—C71.398 (3)N15—O171.2516 (19)
C6—H60.93O1W—H2D0.85 (2)
C7—C81.375 (3)O1W—H1D0.78 (2)
C7—H70.93
C2—N1—C9108.82 (13)C7—C8—H8121.7
C2—N1—H1N126.9 (14)C9—C8—H8121.7
C9—N1—H1N123.4 (13)C4—C9—C8120.69 (16)
C2—N3—C4109.03 (14)C4—C9—N1106.34 (14)
C2—N3—H3N127.8 (15)C8—C9—N1132.97 (16)
C4—N3—H3N123.2 (15)C11—C10—N14115.50 (15)
N1—C2—N3109.45 (15)C11—C10—C2125.47 (15)
N1—C2—C10125.43 (14)N14—C10—C2119.03 (14)
N3—C2—C10125.13 (15)C10—C11—S12110.26 (13)
C9—C4—C5122.87 (17)C10—C11—H11124.9
C9—C4—N3106.36 (14)S12—C11—H11124.9
C5—C4—N3130.76 (16)N14—C13—S12116.36 (14)
C6—C5—C4116.81 (19)N14—C13—H13121.8
C6—C5—H5121.6S12—C13—H13121.8
C4—C5—H5121.6C13—N14—C10108.79 (15)
C5—C6—C7120.04 (18)O18—N15—O16120.71 (18)
C5—C6—H6120O18—N15—O17121.43 (17)
C7—C6—H6120O16—N15—O17117.84 (16)
C8—C7—C6123.02 (19)O18—N15—O17121.43 (17)
C8—C7—H7118.5O16—N15—O17117.84 (16)
C6—C7—H7118.5H2D—O1W—H1D112 (2)
C7—C8—C9116.52 (18)C11—S12—C1389.08 (8)
C9—C4—C5—C61.6 (3)N14—C10—C11—S12−0.39 (19)
N3—C4—C5—C6−179.56 (17)C2—C10—C11—S12179.16 (13)
C4—C5—C6—C70.2 (3)N3—C2—N1—C90.41 (18)
C5—C6—C7—C8−2.2 (3)C10—C2—N1—C9−179.28 (14)
C6—C7—C8—C92.3 (3)C4—C9—N1—C2−0.09 (17)
C5—C4—C9—C8−1.5 (3)C8—C9—N1—C2−179.72 (17)
N3—C4—C9—C8179.44 (14)N1—C2—N3—C4−0.58 (18)
C5—C4—C9—N1178.82 (15)C10—C2—N3—C4179.11 (14)
N3—C4—C9—N1−0.25 (17)C9—C4—N3—C20.51 (18)
C7—C8—C9—C4−0.5 (2)C5—C4—N3—C2−178.47 (18)
C7—C8—C9—N1179.10 (16)S12—C13—N14—C10−0.2 (2)
N1—C2—C10—C11−179.51 (16)C11—C10—N14—C130.4 (2)
N3—C2—C10—C110.8 (3)C2—C10—N14—C13−179.21 (15)
N1—C2—C10—N140.0 (2)C10—C11—S12—C130.22 (14)
N3—C2—C10—N14−179.62 (15)N14—C13—S12—C11−0.01 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2D···O170.85 (2)2.06 (2)2.903 (2)168 (2)
O1W—H1D···O16i0.78 (2)2.24 (3)2.969 (2)156 (2)
N1—H1N···O1Wi0.85 (2)1.91 (2)2.748 (2)168.5 (18)
N3—H3N···O16ii0.82 (2)2.58 (2)3.300 (2)147.5 (18)
N3—H3N···O17ii0.82 (2)2.02 (2)2.791 (2)157 (2)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2274).

References

  • Devereux, M., McCann, M. O., Shea, D., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem.98, 1023–1031. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Goodgame, M., Holt, S. D., Piggott, B. & Williams, D. J. (1985). Inorg. Chim. Acta, 107, 49–55.
  • Kowala, C. & Wunderlich, J. A. (1973). Inorg. Chim. Acta, 7, 331–338.
  • Murugesan, S., Prabakaran, P. & Muthiah, P. T. (1998). Acta Cryst. C54, 1905–1907.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Prabakaran, P., Murugesan, S., Robert, J. J., Panneerselvam, P., Muthiah, P. T., Bocelli, G. & Righi, L. (2000). Chem. Lett. pp. 1080–1081.
  • Rong, M., Muir, M. M., Cádiz, M. E. & Muir, J. A. (1991). Acta Cryst. C47, 1539–1541.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stanley, N., Panneerselvam, P. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o426–o428.
  • Trus, B. L. & Marsh, R. E. (1973). Acta Cryst. B29, 2298–2301.
  • Udupa, M. R. & Krebs, B. (1979). Inorg. Chim. Acta, 32, 1–5.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography