PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o997.
Published online 2010 March 31. doi:  10.1107/S1600536810010354
PMCID: PMC2984021

N-(3-Chloro­phen­yl)-3-methyl­benzamide hemihydrate

Abstract

In the title compound, C14H12ClNO·0.5H2O, the N—H bond is in an anti conformation to the C=O bond. The two aromatic rings make a dihedral angle of 49.5 (1)°. The water mol­ecule lies on a twofold rotation axis. In the crystal, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For the preparation of the title compound and related structures, see: Gowda et al. (2008a [triangle],b [triangle]); Bowes et al. (2003 [triangle]); Rodrigues et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o997-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO·0.5H2O
  • M r = 254.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o997-efi3.jpg
  • a = 7.6497 (3) Å
  • b = 12.6829 (5) Å
  • c = 25.9694 (10) Å
  • β = 95.365 (3)°
  • V = 2508.54 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 295 K
  • 0.52 × 0.16 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.860, T max = 0.984
  • 19774 measured reflections
  • 2277 independent reflections
  • 1894 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.095
  • S = 1.07
  • 2277 reflections
  • 164 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010354/bt5221sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010354/bt5221Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, Rodrigues et al., 2010), the structure of N-(3-chlorophenyl)3-methylbenzamide hydrate (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(3-chlorophenyl)3-chlorobenzamide (II), N-(3-chlorophenyl)benzamide (III)(Gowda et al., 2008b), 3-methyl-N-(phenyl)benzamide (IV)(Gowda et al., 2008a), N-(2-chlorophenyl)3-methylbenzamide (V)(Rodrigues et al., 2010) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is also anti to the meta- methyl substituent in the benzoyl ring and that of the N—H bond is anti to the meta-Cl group in the aniline ring, compared to the syn conformation observed between the N—H bond and the ortho-Cl group in the aniline ring of (V).

The two aromatic rings make a dihedral angle of 49.5 (1)°. The central amide group –NH–C(=O)– is twisted by 35.1 (1)° and 15.9 (1)° out of the planes of the 3-methylphenyl and 3-chlorophenyl ring, respectively. The molecular structure is stabilized by the C9–H9···O1 intramolecular hydrogen bond (Table 1). In the crystal, the water molecule lies on a twofold rotation axis.

Intermolecular N–H···O and O–H···O hydrogen bonds connect the molecules into a three-dimensional network (Fig.2). The water O2w oxygen lies on a twofold rotation axis 0,y,1/4 and its hydrogen atoms are related by the symmetry -x, y, 1/2 - z.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2008a,b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution in the presence of a few drops of water, at room temperature.

Refinement

The C- and N- bound hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The coordinates of the water hydrogen atom were refined. The Uiso(H) values were set at 1.2Ueq(C aromatic, N, O) and 1.5Ueq(Cmethyl). The C14-methyl group exhibits orientational disorder in the positions of H atoms. The two sets of methyl hydrogen atoms were refined with occupancies of 0.52 (9)) and 0.48 (9).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii. Only one set of the disordered methyl H atoms ...
Fig. 2.
Part of the crystal structure of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted. Symmetry code: (i) x+1/2, y+1/2, z.

Crystal data

C14H12ClNO·0.5H2OF(000) = 1064
Mr = 254.71Dx = 1.349 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9097 reflections
a = 7.6497 (3) Åθ = 2.4–29.6°
b = 12.6829 (5) ŵ = 0.29 mm1
c = 25.9694 (10) ÅT = 295 K
β = 95.365 (3)°Rod, colourless
V = 2508.54 (16) Å30.52 × 0.16 × 0.06 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector2277 independent reflections
graphite1894 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.029
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −9→9
Tmin = 0.860, Tmax = 0.984k = −15→15
19774 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.037P)2 + 1.9211P] where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2652 (2)0.58130 (14)0.27335 (7)0.0377 (4)
C20.2321 (2)0.59925 (13)0.21633 (6)0.0357 (4)
C30.1655 (2)0.69364 (13)0.19574 (6)0.0369 (4)
H30.14510.7490.21790.044*
C40.1286 (2)0.70707 (14)0.14252 (7)0.0384 (4)
C50.1625 (2)0.62336 (15)0.11091 (7)0.0447 (4)
H50.13890.63070.07530.054*
C60.2302 (3)0.52944 (15)0.13046 (7)0.0485 (5)
H60.25350.47480.10820.058*
C70.2633 (2)0.51674 (14)0.18334 (7)0.0435 (4)
H70.30640.45290.19680.052*
C80.3568 (2)0.67382 (13)0.35616 (6)0.0330 (4)
C90.2973 (2)0.59967 (14)0.38974 (7)0.0392 (4)
H90.23620.54020.37720.047*
C100.3311 (2)0.61650 (15)0.44221 (7)0.0450 (4)
C110.4205 (3)0.70309 (16)0.46236 (7)0.0524 (5)
H110.44240.71230.49790.063*
C120.4770 (3)0.77618 (16)0.42818 (7)0.0516 (5)
H120.53710.83590.44090.062*
C130.4461 (2)0.76231 (14)0.37559 (7)0.0407 (4)
H130.48510.81230.35310.049*
C140.0552 (3)0.80902 (15)0.12042 (8)0.0542 (5)
H14A0.08340.8650.14460.081*0.52 (9)
H14B−0.070.80320.11380.081*0.52 (9)
H14C0.10530.8240.08870.081*0.52 (9)
H14D0.14180.84360.10190.081*0.48 (9)
H14E0.02420.85370.1480.081*0.48 (9)
H14F−0.04740.79490.09720.081*0.48 (9)
N10.32473 (17)0.66596 (11)0.30168 (5)0.0362 (3)
H1N0.34560.72170.28450.043*
O10.24049 (18)0.49471 (10)0.29259 (5)0.0516 (4)
O2W00.34503 (13)0.250.0413 (4)
H2W0.077 (2)0.3837 (15)0.2631 (7)0.05*
Cl10.25269 (9)0.52457 (5)0.48445 (2)0.0763 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0362 (9)0.0364 (10)0.0401 (9)−0.0005 (7)0.0012 (7)−0.0016 (8)
C20.0340 (9)0.0362 (10)0.0368 (9)−0.0055 (7)0.0030 (7)−0.0004 (7)
C30.0350 (9)0.0368 (9)0.0389 (10)−0.0028 (7)0.0028 (7)−0.0064 (8)
C40.0356 (9)0.0388 (10)0.0401 (10)−0.0050 (7)−0.0005 (7)−0.0018 (8)
C50.0503 (10)0.0495 (11)0.0337 (9)−0.0073 (9)0.0010 (8)−0.0041 (9)
C60.0611 (12)0.0412 (11)0.0438 (11)−0.0018 (9)0.0090 (9)−0.0111 (9)
C70.0514 (10)0.0354 (10)0.0440 (10)−0.0002 (8)0.0057 (8)−0.0023 (8)
C80.0322 (8)0.0330 (9)0.0339 (9)0.0055 (7)0.0028 (7)−0.0017 (7)
C90.0442 (10)0.0344 (9)0.0389 (10)−0.0013 (8)0.0035 (8)−0.0021 (8)
C100.0534 (11)0.0441 (11)0.0381 (10)0.0026 (9)0.0077 (8)0.0044 (8)
C110.0641 (12)0.0601 (13)0.0321 (10)−0.0029 (10)−0.0007 (9)−0.0071 (9)
C120.0566 (12)0.0477 (11)0.0497 (11)−0.0101 (9)0.0014 (9)−0.0113 (9)
C130.0456 (10)0.0380 (10)0.0388 (10)−0.0027 (8)0.0051 (8)−0.0012 (8)
C140.0607 (12)0.0472 (12)0.0529 (12)0.0029 (10)−0.0041 (9)0.0026 (9)
N10.0435 (8)0.0319 (7)0.0331 (8)−0.0034 (6)0.0025 (6)0.0023 (6)
O10.0757 (9)0.0354 (7)0.0417 (7)−0.0116 (6)−0.0055 (6)0.0036 (6)
O2W0.0476 (10)0.0314 (10)0.0442 (10)0−0.0003 (8)0
Cl10.1181 (5)0.0692 (4)0.0436 (3)−0.0204 (3)0.0181 (3)0.0103 (3)

Geometric parameters (Å, °)

C1—O11.228 (2)C9—C101.380 (2)
C1—N11.356 (2)C9—H90.93
C1—C21.496 (2)C10—C111.371 (3)
C2—C71.387 (2)C10—Cl11.7451 (19)
C2—C31.389 (2)C11—C121.380 (3)
C3—C41.395 (2)C11—H110.93
C3—H30.93C12—C131.375 (2)
C4—C51.382 (2)C12—H120.93
C4—C141.502 (3)C13—H130.93
C5—C61.377 (3)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—C71.382 (3)C14—H14C0.96
C6—H60.93C14—H14D0.96
C7—H70.93C14—H14E0.96
C8—C131.384 (2)C14—H14F0.96
C8—C91.388 (2)N1—H1N0.86
C8—N11.417 (2)O2W—H2W0.813 (18)
O1—C1—N1122.95 (16)C8—C9—H9120.9
O1—C1—C2121.35 (15)C11—C10—C9122.79 (17)
N1—C1—C2115.69 (15)C11—C10—Cl1118.93 (14)
C7—C2—C3119.37 (16)C9—C10—Cl1118.27 (14)
C7—C2—C1118.28 (15)C10—C11—C12117.86 (17)
C3—C2—C1122.30 (15)C10—C11—H11121.1
C2—C3—C4121.33 (16)C12—C11—H11121.1
C2—C3—H3119.3C13—C12—C11121.16 (18)
C4—C3—H3119.3C13—C12—H12119.4
C5—C4—C3117.58 (16)C11—C12—H12119.4
C5—C4—C14121.24 (16)C12—C13—C8119.93 (17)
C3—C4—C14121.17 (16)C12—C13—H13120
C6—C5—C4122.05 (17)C8—C13—H13120
C6—C5—H5119C4—C14—H14A109.5
C4—C5—H5119C4—C14—H14B109.5
C5—C6—C7119.67 (17)C4—C14—H14C109.5
C5—C6—H6120.2C4—C14—H14D109.5
C7—C6—H6120.2C4—C14—H14E109.5
C6—C7—C2119.98 (17)H14D—C14—H14E109.5
C6—C7—H7120C4—C14—H14F109.5
C2—C7—H7120H14D—C14—H14F109.5
C13—C8—C9119.99 (15)H14E—C14—H14F109.5
C13—C8—N1117.04 (15)C1—N1—C8127.99 (14)
C9—C8—N1122.92 (15)C1—N1—H1N116
C10—C9—C8118.26 (16)C8—N1—H1N116
C10—C9—H9120.9
O1—C1—C2—C7−33.4 (2)C13—C8—C9—C10−0.6 (2)
N1—C1—C2—C7146.10 (16)N1—C8—C9—C10−178.05 (15)
O1—C1—C2—C3144.07 (17)C8—C9—C10—C110.1 (3)
N1—C1—C2—C3−36.4 (2)C8—C9—C10—Cl1178.80 (13)
C7—C2—C3—C40.2 (2)C9—C10—C11—C120.5 (3)
C1—C2—C3—C4−177.18 (15)Cl1—C10—C11—C12−178.23 (15)
C2—C3—C4—C5−0.7 (2)C10—C11—C12—C13−0.5 (3)
C2—C3—C4—C14179.53 (16)C11—C12—C13—C80.0 (3)
C3—C4—C5—C60.1 (3)C9—C8—C13—C120.6 (3)
C14—C4—C5—C6179.83 (17)N1—C8—C13—C12178.17 (16)
C4—C5—C6—C71.0 (3)O1—C1—N1—C8−4.7 (3)
C5—C6—C7—C2−1.5 (3)C2—C1—N1—C8175.85 (14)
C3—C2—C7—C60.9 (3)C13—C8—N1—C1169.04 (16)
C1—C2—C7—C6178.40 (16)C9—C8—N1—C1−13.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.862.23.0155 (19)158
O2W—H2W···O10.813 (18)1.991 (18)2.7984 (17)171.9 (19)

Symmetry codes: (i) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5221).

References

  • Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [PubMed]
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o462. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Rodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography