PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o803–o804.
Published online 2010 March 13. doi:  10.1107/S1600536810008718
PMCID: PMC2984019

2′-Methyl-3,5-diphenyl­spiro­[4,6-dioxa-2-aza­bicyclo­[3.2.0]hept-2-ene-7,4′-iso­quinoline]-1′,3′(2′H,4′H)-dione

Abstract

In the title compound, C25H18N2O4, the tetra­hydro­pyridine ring adopts a distorted envelope conformation with the spiro C atom at the flap position [deviation = 0.470 (2) Å]. The dihydro–oxazole ring is planar (r.m.s. deviation = 0.013 Å) and it makes dihedral angles of 73.43 (8) and 4.24 (8)° with the two attached phenyl rings. The dihedral angle between oxetane and oxazole planes is 67.44 (9)°. In the crystal structure, C—H(...)O hydrogen bonds link neighbouring mol­ecules into zigzag chains along the b axis and these chains are linked via C—H(...)π inter­actions.

Related literature

For general background to and applications of isoquinolinedione derivatives, see: Hall et al. (1994 [triangle]); Malamas & Hohman (1994 [triangle]); Nan et al. (2004 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For related structures, see: Fun et al. (2010 [triangle]); Wang et al. (2000 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o803-scheme1.jpg

Experimental

Crystal data

  • C25H18N2O4
  • M r = 410.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o803-efi1.jpg
  • a = 13.3142 (3) Å
  • b = 8.0366 (2) Å
  • c = 19.1913 (5) Å
  • β = 109.882 (1)°
  • V = 1931.09 (8) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.79 mm−1
  • T = 100 K
  • 0.27 × 0.26 × 0.25 mm

Data collection

  • Bruker SMART APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.815, T max = 0.830
  • 32042 measured reflections
  • 3254 independent reflections
  • 3227 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.150
  • S = 1.35
  • 3254 reflections
  • 353 parameters
  • All H-atom parameters refined
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008718/ci5051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008718/ci5051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (grant No. 2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

1,3,4(2H)-Isoquinolinetrione derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids. On the other hand, the N-analogues of homophthalic anhydride, 1,3-isoquinolinedione and its derivatives, have a wide range of biological activities and their structural modifications with the aim of finding new drugs and medicine have drawn increasing research interests (Malamas & Hohman, 1994; Hall et al., 1994). Some substituted 1,3,4(2H)-isoquinolinetrione and their derivatives have been reported to treat neurodegenerative diseases, especially as the medicine for Alzhermer's disease, apoplexy and brain ischernic injuries (Nan et al., 2004). The crystal structure of Z-2-methyl-3'-phenyl-spiro[isoquinoline-4,2'-oxirane]-1,3-dione has been reported (Wang et al., 2000). In view of the importance of the title compound as a caspase inhibitor, this paper reports its crystal structure.

In the title isoquinoline-1,3-dione derivative (Fig. 1), the dihydro-oxazole ring (C10/C11/O4/C12/N2) is essentially planar, with a maximum deviation of 0.019 (1) Å at atom O4. The oxazole ring makes dihedral angles of 73.43 (8) and 4.24 (8)°, respectively, with C13–C18 and C19–C24 benzene rings attached to it. The tetrahydropyridine ring of the tetrahydroisoquinoline ring system adopts a distorted envelope conformation with spiro carbon C9 as the flap; the puckering amplitude Q = 0.352 (2) Å; θ = 108.2 (3)° and [var phi] = 287.0 (3)° (Cremer & Pople, 1975). The oxetane plane (C9-C11/O3) is inclined at a dihedral angle of 67.44 (9)° with the oxazole ring. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those observed in related isoquinoline-1,3-dione structures (Fun et al., 2010; Wang et al., 2000).

In the crystal structure (Fig. 2), intermolecular C17—H17A···O1 hydrogen bonds (Table 1) link the molecules into zigzag chains along the b axis. The adjacent chains are cross-linked by intermolecular C—H···π interactions (Table 1) involving the C13-C18 benzene ring (centroid Cg1).

Experimental

The title compound was obtained from the reaction between 1,3,4(2H)-isoquinolinetrione (189 mg, 1 mmol) and 2,5-diphenyloxazole (440 mg, 2 mmol). The compound was purified by flash column chromatography in ethyl acetate and petroleum ether. X-ray quality single crystals of the title compound were obtained by slow evaporation of a chloroform solution.

Refinement

All the H atoms were located in a difference Fourier map [C–H = 0.95 (2)–1.021 (18) Å] and allowed to refine freely. The highest residual electron density peak is located at 0.75 Å from H10A and the deepest hole is located at 0.86 Å from C18.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal structure of the title compound, viewed along the c axis, showing a hydrogen-bonded (dashed lines) chain along the b axis. H atoms not involved in the interactions have been omitted for clarity.

Crystal data

C25H18N2O4F(000) = 856
Mr = 410.41Dx = 1.412 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9894 reflections
a = 13.3142 (3) Åθ = 3.5–64.6°
b = 8.0366 (2) ŵ = 0.79 mm1
c = 19.1913 (5) ÅT = 100 K
β = 109.882 (1)°Block, colourless
V = 1931.09 (8) Å30.27 × 0.26 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer3254 independent reflections
Radiation source: fine-focus sealed tube3227 reflections with I > 2σ(I)
noneRint = 0.018
[var phi] and ω scansθmax = 65.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −15→15
Tmin = 0.815, Tmax = 0.830k = −9→8
32042 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.150w = 1/[σ2(Fo2) + (0.0926P)2 + 0.3391P] where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max = 0.001
3254 reflectionsΔρmax = 0.80 e Å3
353 parametersΔρmin = −0.88 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (3)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.67405 (9)0.09357 (15)0.23596 (6)0.0292 (3)
O20.98657 (9)0.36419 (16)0.27093 (6)0.0317 (3)
O30.62301 (8)0.07638 (12)0.08429 (5)0.0200 (3)
O40.65067 (8)−0.12787 (13)0.00309 (5)0.0197 (3)
N10.83241 (10)0.22292 (16)0.25592 (7)0.0219 (3)
N20.82562 (9)−0.07527 (14)0.06914 (6)0.0185 (3)
C10.73931 (12)0.14769 (18)0.21089 (8)0.0210 (4)
C20.90196 (12)0.31220 (19)0.22920 (8)0.0225 (4)
C30.86313 (11)0.34634 (18)0.14836 (8)0.0206 (4)
C40.91327 (12)0.4707 (2)0.12193 (9)0.0253 (4)
C50.87765 (13)0.5082 (2)0.04699 (9)0.0265 (4)
C60.79084 (13)0.42300 (19)−0.00134 (9)0.0244 (4)
C70.74074 (12)0.29813 (19)0.02473 (8)0.0216 (4)
C80.77731 (11)0.25907 (18)0.09976 (8)0.0187 (4)
C90.73081 (11)0.11985 (18)0.13037 (8)0.0190 (4)
C100.76955 (11)−0.06240 (18)0.12152 (8)0.0182 (4)
C110.65008 (12)−0.09381 (18)0.07673 (8)0.0193 (4)
C120.75508 (11)−0.10798 (17)0.00665 (8)0.0182 (4)
C130.58169 (11)−0.21713 (18)0.09854 (8)0.0194 (4)
C140.59034 (13)−0.3863 (2)0.08529 (9)0.0247 (4)
C150.53327 (13)−0.5023 (2)0.11064 (9)0.0278 (4)
C160.46778 (12)−0.4499 (2)0.14951 (9)0.0263 (4)
C170.45793 (12)−0.2815 (2)0.16149 (8)0.0246 (4)
C180.51465 (11)−0.1653 (2)0.13609 (8)0.0219 (4)
C190.77737 (12)−0.12908 (17)−0.06280 (8)0.0192 (4)
C200.88379 (12)−0.12115 (18)−0.05944 (9)0.0215 (4)
C210.90942 (13)−0.13662 (19)−0.12331 (9)0.0259 (4)
C220.82889 (14)−0.1618 (2)−0.19087 (9)0.0286 (4)
C230.72301 (13)−0.1716 (2)−0.19467 (9)0.0284 (4)
C240.69684 (12)−0.15463 (18)−0.13063 (8)0.0229 (4)
C250.85260 (14)0.2178 (2)0.33612 (8)0.0267 (4)
H4A0.9730 (17)0.530 (3)0.1601 (11)0.038 (5)*
H5A0.9128 (16)0.594 (3)0.0298 (11)0.030 (5)*
H6A0.7619 (14)0.453 (2)−0.0564 (10)0.023 (4)*
H7A0.6790 (15)0.241 (2)−0.0100 (10)0.027 (4)*
H10A0.8042 (13)−0.122 (2)0.1680 (10)0.017 (4)*
H14A0.6366 (16)−0.421 (3)0.0580 (11)0.036 (5)*
H15A0.5374 (16)−0.622 (3)0.0998 (11)0.036 (5)*
H16A0.4261 (15)−0.531 (3)0.1681 (10)0.030 (5)*
H17A0.4124 (15)−0.243 (2)0.1881 (10)0.025 (4)*
H18A0.5091 (14)−0.049 (3)0.1448 (10)0.025 (4)*
H20A0.9383 (15)−0.105 (2)−0.0121 (10)0.022 (4)*
H21A0.9834 (15)−0.124 (2)−0.1203 (9)0.023 (4)*
H22A0.8479 (17)−0.174 (3)−0.2372 (12)0.042 (6)*
H23A0.6682 (16)−0.191 (3)−0.2414 (11)0.031 (5)*
H24A0.6219 (16)−0.159 (2)−0.1330 (10)0.029 (5)*
H25A0.7977 (15)0.286 (2)0.3470 (10)0.027 (4)*
H25B0.8482 (14)0.103 (3)0.3493 (10)0.028 (5)*
H25C0.9243 (16)0.267 (2)0.3603 (11)0.030 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0334 (7)0.0323 (7)0.0290 (6)−0.0065 (5)0.0198 (5)−0.0034 (5)
O20.0214 (6)0.0460 (8)0.0256 (6)−0.0050 (5)0.0051 (5)−0.0069 (5)
O30.0174 (6)0.0182 (6)0.0238 (6)−0.0004 (4)0.0060 (4)−0.0003 (4)
O40.0182 (6)0.0235 (6)0.0182 (5)−0.0023 (4)0.0074 (4)−0.0009 (4)
N10.0231 (7)0.0252 (7)0.0186 (6)0.0023 (5)0.0085 (5)−0.0009 (5)
N20.0191 (6)0.0170 (6)0.0201 (6)0.0012 (4)0.0076 (5)0.0001 (5)
C10.0239 (8)0.0185 (8)0.0226 (8)0.0023 (6)0.0107 (6)0.0005 (6)
C20.0205 (8)0.0240 (8)0.0237 (8)0.0023 (6)0.0085 (6)−0.0035 (6)
C30.0201 (7)0.0204 (8)0.0232 (8)0.0018 (6)0.0099 (6)−0.0028 (6)
C40.0229 (8)0.0223 (8)0.0323 (9)−0.0032 (6)0.0117 (7)−0.0030 (6)
C50.0290 (8)0.0207 (8)0.0346 (9)0.0006 (6)0.0172 (7)0.0047 (6)
C60.0285 (8)0.0227 (8)0.0255 (8)0.0051 (6)0.0138 (7)0.0038 (6)
C70.0225 (8)0.0209 (8)0.0226 (8)0.0016 (6)0.0092 (6)−0.0012 (6)
C80.0185 (7)0.0172 (7)0.0219 (7)0.0021 (5)0.0090 (6)−0.0008 (5)
C90.0178 (7)0.0192 (7)0.0209 (7)0.0002 (5)0.0077 (6)−0.0009 (5)
C100.0191 (7)0.0181 (7)0.0182 (7)−0.0002 (5)0.0073 (6)0.0006 (5)
C110.0207 (8)0.0192 (7)0.0184 (7)0.0012 (6)0.0074 (6)0.0003 (5)
C120.0179 (7)0.0145 (7)0.0228 (8)0.0002 (5)0.0076 (6)0.0011 (5)
C130.0165 (7)0.0216 (8)0.0188 (7)−0.0017 (6)0.0045 (6)0.0008 (6)
C140.0260 (8)0.0246 (8)0.0265 (8)−0.0016 (6)0.0130 (7)−0.0026 (6)
C150.0311 (9)0.0211 (8)0.0321 (9)−0.0044 (6)0.0116 (7)−0.0007 (6)
C160.0237 (8)0.0283 (9)0.0270 (8)−0.0067 (6)0.0085 (6)0.0033 (6)
C170.0187 (7)0.0312 (9)0.0253 (8)−0.0020 (6)0.0095 (6)0.0011 (6)
C180.0188 (7)0.0226 (8)0.0242 (8)0.0005 (6)0.0071 (6)0.0006 (6)
C190.0231 (8)0.0137 (7)0.0217 (8)−0.0001 (5)0.0089 (6)0.0002 (5)
C200.0222 (8)0.0196 (8)0.0229 (8)−0.0010 (6)0.0078 (6)0.0002 (6)
C210.0269 (9)0.0239 (8)0.0316 (9)−0.0013 (6)0.0158 (7)−0.0024 (6)
C220.0371 (9)0.0284 (9)0.0253 (8)−0.0032 (7)0.0172 (7)−0.0053 (6)
C230.0310 (9)0.0319 (9)0.0213 (8)−0.0032 (7)0.0074 (7)−0.0059 (6)
C240.0226 (8)0.0216 (8)0.0246 (8)−0.0006 (6)0.0081 (6)−0.0018 (6)
C250.0304 (9)0.0319 (10)0.0190 (8)0.0065 (7)0.0100 (7)−0.0008 (6)

Geometric parameters (Å, °)

O1—C11.2083 (18)C11—C131.499 (2)
O2—C21.2130 (19)C12—C191.470 (2)
O3—C111.4343 (17)C13—C181.388 (2)
O3—C91.4495 (17)C13—C141.395 (2)
O4—C121.3777 (17)C14—C151.391 (2)
O4—C111.4421 (16)C14—H14A0.98 (2)
N1—C11.386 (2)C15—C161.392 (2)
N1—C21.399 (2)C15—H15A0.99 (2)
N1—C251.4702 (18)C16—C171.386 (2)
N2—C121.2741 (19)C16—H16A1.00 (2)
N2—C101.4453 (18)C17—C181.389 (2)
C1—C91.5269 (19)C17—H17A0.966 (18)
C2—C31.485 (2)C18—H18A0.96 (2)
C3—C41.390 (2)C19—C241.392 (2)
C3—C81.394 (2)C19—C201.398 (2)
C4—C51.386 (2)C20—C211.385 (2)
C4—H4A1.00 (2)C20—H20A0.960 (19)
C5—C61.391 (2)C21—C221.388 (2)
C5—H5A0.95 (2)C21—H21A0.972 (19)
C6—C71.389 (2)C22—C231.389 (2)
C6—H6A1.021 (18)C22—H22A1.01 (2)
C7—C81.390 (2)C23—C241.393 (2)
C7—H7A0.979 (19)C23—H23A0.96 (2)
C8—C91.4925 (19)C24—H24A0.98 (2)
C9—C101.5810 (19)C25—H25A0.99 (2)
C10—C111.550 (2)C25—H25B0.97 (2)
C10—H10A0.979 (17)C25—H25C0.99 (2)
C11—O3—C993.49 (10)C13—C11—C10124.00 (12)
C12—O4—C11105.73 (10)N2—C12—O4118.61 (12)
C1—N1—C2123.94 (12)N2—C12—C19124.45 (13)
C1—N1—C25116.55 (12)O4—C12—C19116.93 (12)
C2—N1—C25119.32 (12)C18—C13—C14119.65 (14)
C12—N2—C10106.25 (12)C18—C13—C11120.36 (13)
O1—C1—N1121.37 (14)C14—C13—C11119.86 (13)
O1—C1—C9122.31 (14)C15—C14—C13120.04 (14)
N1—C1—C9115.96 (12)C15—C14—H14A120.9 (12)
O2—C2—N1121.09 (14)C13—C14—H14A119.0 (12)
O2—C2—C3122.78 (14)C14—C15—C16120.06 (15)
N1—C2—C3116.04 (13)C14—C15—H15A120.1 (12)
C4—C3—C8120.25 (14)C16—C15—H15A119.8 (12)
C4—C3—C2118.33 (14)C17—C16—C15119.76 (14)
C8—C3—C2121.42 (13)C17—C16—H16A119.0 (11)
C5—C4—C3119.85 (14)C15—C16—H16A121.2 (11)
C5—C4—H4A124.3 (12)C16—C17—C18120.30 (14)
C3—C4—H4A115.8 (12)C16—C17—H17A120.8 (11)
C4—C5—C6119.90 (14)C18—C17—H17A118.9 (11)
C4—C5—H5A118.7 (12)C13—C18—C17120.17 (14)
C6—C5—H5A121.4 (12)C13—C18—H18A119.1 (11)
C7—C6—C5120.48 (14)C17—C18—H18A120.8 (11)
C7—C6—H6A118.8 (10)C24—C19—C20119.76 (14)
C5—C6—H6A120.7 (10)C24—C19—C12122.41 (13)
C6—C7—C8119.63 (14)C20—C19—C12117.82 (13)
C6—C7—H7A119.3 (11)C21—C20—C19120.39 (15)
C8—C7—H7A121.1 (11)C21—C20—H20A121.0 (11)
C7—C8—C3119.88 (13)C19—C20—H20A118.6 (11)
C7—C8—C9122.08 (13)C20—C21—C22119.69 (15)
C3—C8—C9117.98 (13)C20—C21—H21A119.2 (10)
O3—C9—C8113.43 (11)C22—C21—H21A121.0 (10)
O3—C9—C1111.72 (11)C21—C22—C23120.34 (15)
C8—C9—C1112.99 (12)C21—C22—H22A119.5 (12)
O3—C9—C1090.15 (10)C23—C22—H22A120.2 (12)
C8—C9—C10117.26 (11)C22—C23—C24120.14 (15)
C1—C9—C10109.26 (11)C22—C23—H23A119.7 (11)
N2—C10—C11106.14 (11)C24—C23—H23A120.2 (11)
N2—C10—C9113.93 (11)C19—C24—C23119.68 (14)
C11—C10—C984.25 (10)C19—C24—H24A119.7 (11)
N2—C10—H10A113.8 (10)C23—C24—H24A120.6 (11)
C11—C10—H10A120.1 (10)N1—C25—H25A108.7 (11)
C9—C10—H10A115.3 (10)N1—C25—H25B107.2 (11)
O3—C11—O4111.43 (11)H25A—C25—H25B110.9 (15)
O3—C11—C13113.89 (12)N1—C25—H25C106.5 (11)
O4—C11—C13110.76 (11)H25A—C25—H25C110.3 (15)
O3—C11—C1091.97 (10)H25B—C25—H25C113.0 (16)
O4—C11—C10103.17 (11)
C2—N1—C1—O1−168.82 (14)C8—C9—C10—C11−119.42 (13)
C25—N1—C1—O16.1 (2)C1—C9—C10—C11110.37 (12)
C2—N1—C1—C918.0 (2)C9—O3—C11—O4−108.01 (12)
C25—N1—C1—C9−167.07 (13)C9—O3—C11—C13125.81 (12)
C1—N1—C2—O2−174.06 (14)C9—O3—C11—C10−3.03 (10)
C25—N1—C2—O211.1 (2)C12—O4—C11—O394.44 (12)
C1—N1—C2—C39.2 (2)C12—O4—C11—C13−137.68 (12)
C25—N1—C2—C3−165.64 (13)C12—O4—C11—C10−3.02 (14)
O2—C2—C3—C4−14.3 (2)N2—C10—C11—O3−110.49 (11)
N1—C2—C3—C4162.41 (13)C9—C10—C11—O32.79 (9)
O2—C2—C3—C8166.92 (14)N2—C10—C11—O42.06 (14)
N1—C2—C3—C8−16.4 (2)C9—C10—C11—O4115.34 (11)
C8—C3—C4—C50.1 (2)N2—C10—C11—C13128.72 (14)
C2—C3—C4—C5−178.67 (13)C9—C10—C11—C13−118.01 (14)
C3—C4—C5—C61.0 (2)C10—N2—C12—O4−2.00 (16)
C4—C5—C6—C7−1.3 (2)C10—N2—C12—C19179.06 (13)
C5—C6—C7—C80.5 (2)C11—O4—C12—N23.43 (17)
C6—C7—C8—C30.6 (2)C11—O4—C12—C19−177.55 (11)
C6—C7—C8—C9−176.45 (13)O3—C11—C13—C18−12.07 (19)
C4—C3—C8—C7−0.9 (2)O4—C11—C13—C18−138.61 (13)
C2—C3—C8—C7177.82 (13)C10—C11—C13—C1898.05 (17)
C4—C3—C8—C9176.28 (13)O3—C11—C13—C14172.03 (13)
C2—C3—C8—C9−5.0 (2)O4—C11—C13—C1445.49 (17)
C11—O3—C9—C8122.99 (12)C10—C11—C13—C14−77.85 (19)
C11—O3—C9—C1−107.89 (12)C18—C13—C14—C15−1.0 (2)
C11—O3—C9—C102.97 (10)C11—C13—C14—C15174.94 (13)
C7—C8—C9—O3−23.27 (19)C13—C14—C15—C16−0.3 (2)
C3—C8—C9—O3159.58 (12)C14—C15—C16—C171.4 (2)
C7—C8—C9—C1−151.74 (13)C15—C16—C17—C18−1.2 (2)
C3—C8—C9—C131.12 (17)C14—C13—C18—C171.1 (2)
C7—C8—C9—C1079.82 (17)C11—C13—C18—C17−174.77 (12)
C3—C8—C9—C10−97.33 (15)C16—C17—C18—C130.0 (2)
O1—C1—C9—O319.88 (19)N2—C12—C19—C24−175.95 (14)
N1—C1—C9—O3−166.99 (12)O4—C12—C19—C245.1 (2)
O1—C1—C9—C8149.23 (14)N2—C12—C19—C203.4 (2)
N1—C1—C9—C8−37.65 (17)O4—C12—C19—C20−175.55 (12)
O1—C1—C9—C10−78.29 (17)C24—C19—C20—C210.8 (2)
N1—C1—C9—C1094.83 (14)C12—C19—C20—C21−178.63 (13)
C12—N2—C10—C11−0.22 (14)C19—C20—C21—C22−0.7 (2)
C12—N2—C10—C9−91.04 (14)C20—C21—C22—C230.0 (2)
O3—C9—C10—N2102.37 (12)C21—C22—C23—C240.6 (2)
C8—C9—C10—N2−14.29 (18)C20—C19—C24—C23−0.2 (2)
C1—C9—C10—N2−144.50 (12)C12—C19—C24—C23179.18 (14)
O3—C9—C10—C11−2.76 (9)C22—C23—C24—C19−0.5 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.97 (2)2.51 (2)3.213 (2)129 (1)
C23—H23A···Cg1ii0.96 (2)2.66 (2)3.5904 (18)166 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y−3/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5051).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Fun, H.-K., Goh, J. H., Yu, H. & Zhang, Y. (2010). Acta Cryst. E66, o724–o725. [PMC free article] [PubMed]
  • Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82. [PubMed]
  • Malamas, M. S. & Hohman, T. C. (1994). J. Med. Chem.37, 2043–2058. [PubMed]
  • Nan, F. J., Li, J., Chen, Y. H., Zhang, Y. H., Gu, M. & Zhang, H. J. (2004). PCT Int. Appl. WO 2004111010 A1.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed.26, 679–689.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography