PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o991.
Published online 2010 March 31. doi:  10.1107/S1600536810011530
PMCID: PMC2984014

N-(2,6-Dimethyl­phen­yl)-3-methyl­benzamide

Abstract

In the mol­ecular structure of the title compound, C16H17NO, the N—H and C=O bonds are anti to each other. The two aromatic rings make a dihedral angle of 73.3 (1)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds connect the mol­ecules into C(4) chains running along the c axis.

Related literature

For preparation of the title compound and related structures, see: Gowda et al. (2008a [triangle],b [triangle], 2009 [triangle]); Bowes et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o991-scheme1.jpg

Experimental

Crystal data

  • C16H17NO
  • M r = 239.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o991-efi1.jpg
  • a = 12.0715 (4) Å
  • b = 12.4966 (3) Å
  • c = 9.7027 (3) Å
  • β = 112.123 (4)°
  • V = 1355.92 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.55 × 0.30 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.972, T max = 0.989
  • 11288 measured reflections
  • 1371 independent reflections
  • 1260 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.084
  • S = 1.08
  • 1371 reflections
  • 169 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.09 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011530/bt5228sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011530/bt5228Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, 2009), in the present work, the structure of N-(2,6-dimethylphenyl)3-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(phenyl)3-methylbenzamide (II)(Gowda et al., 2008a), N-(2,6-dimethylphenyl)2-methylbenzamide (III) (Gowda et al., 2008b), N-(2,6-dichloromethylphenyl)- 3-methylbenzamide (IV)(Gowda et al., 2009) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is syn to the meta-methyl substituent in the benzoyl ring, similar to that observed in (III) and (IV), but contrary to the anti conformation observed between the C=O bond and the meta-methyl group in the benzoyl ring of (II).

The two aromatic rings make a dihedral angle of 73.3 (1) °. The amide group –NH–C(=O)– is twisted by 81.0 (1)° and 25.8 (2)° out of the planes of the 2,6-dimethylphenyl and 3-methylphenyl rings, respectively. In the crystal, intermolecular N–H···O hydrogen bonds (Table 1) connect the molecules into chains running along the c-axis (Fig. 2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2008a,b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement

H atoms bounded to carbon atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å. The coordinates of the amide H atom were refined with the N–H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(Caromatic, N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and Friedel pairs were merged. Any references to the Flack parameter were removed.

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of crystal structure of (I) showing molecular chains running along the c-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted. Symmetry code:(i) x, -y+1, z+1/2.

Crystal data

C16H17NOF(000) = 512
Mr = 239.31Dx = 1.172 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6791 reflections
a = 12.0715 (4) Åθ = 2.3–29.5°
b = 12.4966 (3) ŵ = 0.07 mm1
c = 9.7027 (3) ÅT = 295 K
β = 112.123 (4)°Block, colourless
V = 1355.92 (7) Å30.55 × 0.30 × 0.18 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer1371 independent reflections
graphite1260 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.030
ω scansθmax = 26.2°, θmin = 2.4°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −14→14
Tmin = 0.972, Tmax = 0.989k = −15→15
11288 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1381P] where P = (Fo2 + 2Fc2)/3
1371 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.09 e Å3
3 restraintsΔρmin = −0.11 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.78435 (17)0.48438 (15)0.42193 (19)0.0400 (4)
C20.67477 (16)0.55392 (15)0.3679 (2)0.0411 (4)
C30.58869 (18)0.53174 (18)0.2278 (2)0.0482 (5)
H30.60040.47450.17360.058*
C40.48627 (19)0.5928 (2)0.1676 (2)0.0558 (5)
C50.4723 (2)0.6792 (2)0.2490 (3)0.0622 (6)
H50.40470.72210.20950.075*
C60.5568 (2)0.7029 (2)0.3876 (3)0.0602 (5)
H60.54570.76120.44070.072*
C70.65776 (19)0.64009 (17)0.4474 (2)0.0486 (5)
H70.71440.65560.54130.058*
C80.95159 (17)0.41695 (16)0.63591 (19)0.0422 (4)
C91.05908 (18)0.46294 (17)0.6440 (2)0.0494 (5)
C101.1631 (2)0.4041 (2)0.7137 (3)0.0621 (6)
H101.2360.43270.72020.074*
C111.1606 (2)0.3050 (2)0.7730 (3)0.0677 (7)
H111.23140.26740.81990.081*
C121.0537 (3)0.2613 (2)0.7630 (3)0.0631 (6)
H121.05290.19390.80320.076*
C130.9464 (2)0.31583 (16)0.6939 (2)0.0496 (5)
C140.3930 (3)0.5643 (3)0.0162 (3)0.0890 (9)
H14A0.33830.6229−0.02010.134*
H14B0.350.50180.02510.134*
H14C0.43180.5502−0.0520.134*
C151.0634 (3)0.5708 (2)0.5791 (4)0.0742 (7)
H15A1.14470.59550.61420.111*
H15B1.01590.62030.6090.111*
H15C1.03260.56580.47260.111*
C160.8297 (3)0.2675 (2)0.6825 (3)0.0724 (7)
H16A0.83670.1910.6870.109*
H16B0.76840.28810.58980.109*
H16C0.80910.29260.76330.109*
N10.84288 (14)0.47696 (14)0.56895 (16)0.0447 (4)
H1N0.813 (2)0.5097 (19)0.627 (3)0.054*
O10.81747 (13)0.43660 (12)0.33310 (16)0.0518 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0423 (9)0.0448 (9)0.0324 (9)−0.0060 (8)0.0137 (7)−0.0005 (8)
C20.0397 (9)0.0481 (10)0.0340 (9)−0.0046 (8)0.0120 (7)0.0050 (8)
C30.0482 (11)0.0587 (12)0.0359 (10)−0.0064 (9)0.0138 (9)0.0009 (9)
C40.0458 (11)0.0759 (14)0.0402 (11)−0.0028 (10)0.0099 (9)0.0115 (10)
C50.0512 (12)0.0728 (15)0.0604 (14)0.0135 (11)0.0185 (11)0.0195 (12)
C60.0631 (13)0.0576 (12)0.0598 (14)0.0085 (11)0.0229 (11)0.0032 (10)
C70.0487 (10)0.0525 (11)0.0408 (10)−0.0012 (9)0.0125 (8)−0.0009 (9)
C80.0453 (10)0.0484 (10)0.0304 (8)0.0037 (8)0.0114 (8)−0.0028 (7)
C90.0473 (11)0.0570 (12)0.0418 (11)−0.0009 (9)0.0146 (9)−0.0057 (9)
C100.0456 (12)0.0837 (16)0.0536 (13)0.0025 (11)0.0149 (10)−0.0075 (12)
C110.0613 (15)0.0842 (18)0.0515 (12)0.0281 (13)0.0141 (11)0.0041 (12)
C120.0868 (17)0.0527 (13)0.0523 (13)0.0181 (12)0.0291 (12)0.0080 (10)
C130.0605 (11)0.0510 (11)0.0376 (9)0.0016 (10)0.0187 (9)−0.0024 (8)
C140.0626 (16)0.133 (3)0.0529 (15)0.0034 (17)0.0006 (13)0.0060 (16)
C150.0653 (15)0.0700 (15)0.0866 (19)−0.0104 (13)0.0280 (14)0.0054 (14)
C160.0841 (17)0.0659 (15)0.0730 (16)−0.0121 (13)0.0361 (14)0.0059 (13)
N10.0446 (9)0.0578 (10)0.0314 (8)0.0074 (7)0.0141 (7)0.0007 (7)
O10.0549 (8)0.0638 (9)0.0357 (7)0.0053 (7)0.0161 (6)−0.0030 (6)

Geometric parameters (Å, °)

C1—O11.232 (2)C9—C151.496 (3)
C1—N11.336 (2)C10—C111.371 (4)
C1—C21.502 (3)C10—H100.93
C2—C71.385 (3)C11—C121.370 (4)
C2—C31.392 (3)C11—H110.93
C3—C41.381 (3)C12—C131.392 (3)
C3—H30.93C12—H120.93
C4—C51.386 (4)C13—C161.498 (4)
C4—C141.518 (3)C14—H14A0.96
C5—C61.380 (3)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—C71.381 (3)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—H70.93C15—H15C0.96
C8—C131.394 (3)C16—H16A0.96
C8—C91.394 (3)C16—H16B0.96
C8—N11.437 (3)C16—H16C0.96
C9—C101.391 (3)N1—H1N0.875 (17)
O1—C1—N1122.20 (18)C12—C11—C10119.9 (2)
O1—C1—C2120.72 (16)C12—C11—H11120
N1—C1—C2117.08 (16)C10—C11—H11120
C7—C2—C3119.08 (17)C11—C12—C13121.3 (2)
C7—C2—C1123.44 (16)C11—C12—H12119.3
C3—C2—C1117.45 (17)C13—C12—H12119.3
C4—C3—C2121.5 (2)C12—C13—C8117.6 (2)
C4—C3—H3119.2C12—C13—C16121.1 (2)
C2—C3—H3119.2C8—C13—C16121.3 (2)
C3—C4—C5118.1 (2)C4—C14—H14A109.5
C3—C4—C14120.0 (2)C4—C14—H14B109.5
C5—C4—C14121.9 (2)H14A—C14—H14B109.5
C6—C5—C4121.3 (2)C4—C14—H14C109.5
C6—C5—H5119.4H14A—C14—H14C109.5
C4—C5—H5119.4H14B—C14—H14C109.5
C5—C6—C7119.9 (2)C9—C15—H15A109.5
C5—C6—H6120C9—C15—H15B109.5
C7—C6—H6120H15A—C15—H15B109.5
C6—C7—C2120.05 (19)C9—C15—H15C109.5
C6—C7—H7120H15A—C15—H15C109.5
C2—C7—H7120H15B—C15—H15C109.5
C13—C8—C9122.22 (18)C13—C16—H16A109.5
C13—C8—N1118.92 (18)C13—C16—H16B109.5
C9—C8—N1118.84 (18)H16A—C16—H16B109.5
C10—C9—C8117.4 (2)C13—C16—H16C109.5
C10—C9—C15120.8 (2)H16A—C16—H16C109.5
C8—C9—C15121.80 (19)H16B—C16—H16C109.5
C11—C10—C9121.6 (2)C1—N1—C8123.02 (16)
C11—C10—H10119.2C1—N1—H1N118.3 (17)
C9—C10—H10119.2C8—N1—H1N118.7 (17)
O1—C1—C2—C7−153.25 (19)C13—C8—C9—C15179.0 (2)
N1—C1—C2—C726.9 (3)N1—C8—C9—C15−2.6 (3)
O1—C1—C2—C324.4 (3)C8—C9—C10—C11−0.3 (3)
N1—C1—C2—C3−155.44 (17)C15—C9—C10—C11−179.7 (2)
C7—C2—C3—C4−0.8 (3)C9—C10—C11—C120.6 (4)
C1—C2—C3—C4−178.60 (18)C10—C11—C12—C13−0.2 (3)
C2—C3—C4—C51.6 (3)C11—C12—C13—C8−0.4 (3)
C2—C3—C4—C14−178.4 (2)C11—C12—C13—C16179.6 (2)
C3—C4—C5—C6−1.2 (3)C9—C8—C13—C120.7 (3)
C14—C4—C5—C6178.8 (3)N1—C8—C13—C12−177.66 (18)
C4—C5—C6—C70.1 (3)C9—C8—C13—C16−179.3 (2)
C5—C6—C7—C20.6 (3)N1—C8—C13—C162.3 (3)
C3—C2—C7—C6−0.3 (3)O1—C1—N1—C82.8 (3)
C1—C2—C7—C6177.36 (19)C2—C1—N1—C8−177.37 (17)
C13—C8—C9—C10−0.4 (3)C13—C8—N1—C1−101.4 (2)
N1—C8—C9—C10177.99 (18)C9—C8—N1—C180.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.09 (2)2.902 (2)154 (2)

Symmetry codes: (i) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5228).

References

  • Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [PubMed]
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o2713. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography