PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o928.
Published online 2010 March 27. doi:  10.1107/S1600536809055391
PMCID: PMC2984013

(3S,4S)-1-Benzyl­pyrrolidine-3,4-diol

Abstract

In the title compound, C11H15NO2, the pyrrolidine ring adapts a twisted envelope conformation and the two hydroxyl groups are arranged in a trans conformation. The crystal packing is stabilized by inter­molecular O—H(...)N and O—H(...)O hydrogen bonds. A weak C—H(...)π inter­action also occurs.

Related literature

For the preparation of the title compound, see: Nagel et al. (1984 [triangle]); Inoguchi et al. (1990 [triangle]). The title compound is used in the preparation of the chiral phosphine ligand DEGphos, (+)-(3R,4R)-N-benzyl-3,4-bis­(diphenyl­phosphino)pyrrolidine, (Nagel et al., 1984 [triangle]), an efficient ligand for Rh-catalysed asymmetric hydrogenation (Tang & Zhang, 2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o928-scheme1.jpg

Experimental

Crystal data

  • C11H15NO2
  • M r = 193.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o928-efi1.jpg
  • a = 6.0244 (10) Å
  • b = 8.1033 (14) Å
  • c = 10.3981 (18) Å
  • β = 96.016 (2)°
  • V = 504.81 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.31 × 0.27 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.973, T max = 0.987
  • 1440 measured reflections
  • 1440 independent reflections
  • 1348 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.105
  • S = 1.03
  • 1440 reflections
  • 125 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: Mercury (Macrae et al., 2006 [triangle]) and CAMERON (Watkin et al., 1996 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055391/jj2016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055391/jj2016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

supplementary crystallographic information

Comment

The title compound (+)-(3S,4S)-1-benzylpyrrolidine-3,4-diol was obtained from L-tartaric acid by condensation with benzylamine followed by reduction with NaBH4—BF3.Et2O. This is used for preparation of the chiral phosphine ligand DEGphos ((+)-(3R,4R)-N-benzyl-3,4- bis(diphenylphosphino)pyrrolidine, (Nagel et al., 1984), an efficient ligand for Rh-catalyzed asymmetric hydrogenations (Tang & Zhang, 2003).

In the title compound, C11H15NO2, the pyrrolidine ring adapts a twisted envelope formation. The two hydroxyl groups at C9 and C10 are arranged in a trans- conformation. The dihedral angle between the mean planes of the pyrrolidine phenyl rings is 62.4 (2)°. Crystal packing is stabilized by intermolecular O—H···N and O—H···O hydrogen bonds interactions. A weak C—H···Cg2 π ring intermolecular intereaction is also observed, where Cg2 = C1–C6.

Experimental

The synthesis of the title compound is described by Nagel et al. (1984). Crystals were grown from its solution in acetone; m.p. 371–373 K.

Refinement

The absolute structure could not be established from the dffraction data and was assigned based on L-tartaric acid the starting material.

All the H atoms were located in difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.97 Å; C—Haryl=0.93 Å; UisoHmethyl and UisoHaryl are both 1.2 U eq(C). O—H is 0.82Å with Uiso(H)=1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The packing of (I) viewed down the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C11H15NO2F(000) = 208
Mr = 193.24Dx = 1.271 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1279 reflections
a = 6.0244 (10) Åθ = 3.2–25.6°
b = 8.1033 (14) ŵ = 0.09 mm1
c = 10.3981 (18) ÅT = 293 K
β = 96.016 (2)°Block, colorless
V = 504.81 (15) Å30.31 × 0.27 × 0.14 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer1440 independent reflections
Radiation source: fine-focus sealed tube1348 reflections with I > 2σ(I)
graphiteRint = 0.0000
[var phi] and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→7
Tmin = 0.973, Tmax = 0.987k = −8→9
1440 measured reflectionsl = 0→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.080P)2] where P = (Fo2 + 2Fc2)/3
1440 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.11 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.5935 (2)−0.00443 (18)0.18867 (14)0.0358 (4)
O10.3213 (2)−0.36878 (18)0.06145 (13)0.0451 (4)
H10.3166−0.4139−0.00940.068*
O20.8566 (2)−0.2626 (2)0.03312 (13)0.0556 (5)
H20.9802−0.29560.06280.083*
C10.7231 (4)0.3493 (3)0.42248 (18)0.0511 (6)
H1A0.60800.33480.47440.061*
C20.8766 (4)0.4734 (3)0.4518 (2)0.0602 (6)
H2A0.86370.54230.52210.072*
C31.0500 (4)0.4951 (3)0.3760 (2)0.0582 (6)
H31.15510.57770.39580.070*
C41.0660 (4)0.3935 (3)0.2711 (2)0.0485 (5)
H41.18140.40840.21950.058*
C50.9109 (3)0.2693 (3)0.24219 (17)0.0420 (5)
H50.92420.20100.17150.050*
C60.7361 (3)0.2451 (3)0.31701 (16)0.0387 (4)
C70.5566 (3)0.1179 (3)0.28805 (19)0.0469 (5)
H7A0.53730.05960.36760.056*
H7B0.41780.17500.26150.056*
C80.3888 (3)−0.0952 (3)0.14674 (19)0.0395 (5)
H8A0.2820−0.02580.09560.047*
H8B0.3203−0.13840.22010.047*
C90.4714 (3)−0.2340 (2)0.06555 (16)0.0359 (4)
H90.4813−0.1938−0.02260.043*
C100.7077 (3)−0.2710 (2)0.13021 (16)0.0371 (4)
H100.7130−0.38060.17020.045*
C110.7500 (3)−0.1372 (3)0.23333 (17)0.0408 (5)
H11A0.7195−0.17790.31740.049*
H11B0.9032−0.09870.23890.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0299 (8)0.0321 (8)0.0458 (8)−0.0001 (7)0.0055 (6)−0.0030 (6)
O10.0388 (8)0.0407 (8)0.0567 (7)−0.0100 (6)0.0099 (6)−0.0062 (6)
O20.0317 (7)0.0791 (12)0.0574 (8)0.0028 (8)0.0111 (6)−0.0130 (8)
C10.0573 (13)0.0502 (14)0.0466 (11)0.0031 (11)0.0097 (9)−0.0049 (9)
C20.0732 (16)0.0519 (15)0.0531 (12)0.0015 (12)−0.0049 (11)−0.0135 (11)
C30.0554 (14)0.0422 (13)0.0724 (13)−0.0059 (11)−0.0154 (11)−0.0048 (11)
C40.0393 (11)0.0412 (12)0.0639 (11)−0.0001 (9)0.0010 (9)0.0071 (10)
C50.0413 (11)0.0373 (11)0.0479 (9)0.0021 (9)0.0068 (8)−0.0020 (8)
C60.0412 (10)0.0329 (10)0.0419 (8)0.0043 (9)0.0038 (7)−0.0011 (8)
C70.0447 (12)0.0407 (11)0.0578 (11)0.0001 (10)0.0176 (10)−0.0067 (10)
C80.0293 (10)0.0364 (11)0.0527 (10)0.0002 (8)0.0043 (8)−0.0003 (8)
C90.0307 (9)0.0342 (11)0.0430 (8)−0.0024 (8)0.0045 (7)0.0023 (8)
C100.0316 (10)0.0351 (10)0.0447 (9)0.0036 (8)0.0046 (7)0.0017 (8)
C110.0374 (11)0.0396 (11)0.0446 (9)0.0040 (9)0.0001 (7)0.0001 (8)

Geometric parameters (Å, °)

N1—C81.463 (2)C4—H40.9300
N1—C71.466 (2)C5—C61.387 (3)
N1—C111.473 (3)C5—H50.9300
O1—C91.416 (2)C6—C71.501 (3)
O1—H10.8200C7—H7A0.9700
O2—C101.421 (2)C7—H7B0.9700
O2—H20.8200C8—C91.521 (3)
C1—C21.379 (3)C8—H8A0.9700
C1—C61.393 (3)C8—H8B0.9700
C1—H1A0.9300C9—C101.539 (2)
C2—C31.384 (3)C9—H90.9800
C2—H2A0.9300C10—C111.528 (3)
C3—C41.378 (3)C10—H100.9800
C3—H30.9300C11—H11A0.9700
C4—C51.385 (3)C11—H11B0.9700
C8—N1—C7111.39 (14)C6—C7—H7B108.2
C8—N1—C11102.61 (14)H7A—C7—H7B107.3
C7—N1—C11114.28 (14)N1—C8—C9102.85 (15)
C9—O1—H1109.5N1—C8—H8A111.2
C10—O2—H2109.5C9—C8—H8A111.2
C2—C1—C6121.6 (2)N1—C8—H8B111.2
C2—C1—H1A119.2C9—C8—H8B111.2
C6—C1—H1A119.2H8A—C8—H8B109.1
C1—C2—C3119.7 (2)O1—C9—C8109.99 (14)
C1—C2—H2A120.1O1—C9—C10114.91 (16)
C3—C2—H2A120.1C8—C9—C10104.09 (15)
C4—C3—C2119.6 (2)O1—C9—H9109.2
C4—C3—H3120.2C8—C9—H9109.2
C2—C3—H3120.2C10—C9—H9109.2
C3—C4—C5120.3 (2)O2—C10—C11113.17 (16)
C3—C4—H4119.9O2—C10—C9107.72 (13)
C5—C4—H4119.9C11—C10—C9104.29 (15)
C4—C5—C6121.04 (19)O2—C10—H10110.5
C4—C5—H5119.5C11—C10—H10110.5
C6—C5—H5119.5C9—C10—H10110.5
C5—C6—C1117.69 (19)N1—C11—C10104.06 (13)
C5—C6—C7123.90 (17)N1—C11—H11A110.9
C1—C6—C7118.38 (16)C10—C11—H11A110.9
N1—C7—C6116.51 (14)N1—C11—H11B110.9
N1—C7—H7A108.2C10—C11—H11B110.9
C6—C7—H7A108.2H11A—C11—H11B109.0
N1—C7—H7B108.2
C6—C1—C2—C3−0.7 (3)C7—N1—C8—C9−169.66 (15)
C1—C2—C3—C40.7 (4)C11—N1—C8—C9−46.96 (17)
C2—C3—C4—C5−0.6 (3)N1—C8—C9—O1155.98 (15)
C3—C4—C5—C60.5 (3)N1—C8—C9—C1032.37 (18)
C4—C5—C6—C1−0.4 (3)O1—C9—C10—O2112.90 (17)
C4—C5—C6—C7177.2 (2)C8—C9—C10—O2−126.76 (16)
C2—C1—C6—C50.5 (3)O1—C9—C10—C11−126.60 (16)
C2—C1—C6—C7−177.25 (19)C8—C9—C10—C11−6.25 (19)
C8—N1—C7—C6−166.25 (16)C8—N1—C11—C1042.96 (18)
C11—N1—C7—C678.0 (2)C7—N1—C11—C10163.69 (15)
C5—C6—C7—N111.1 (3)O2—C10—C11—N194.90 (18)
C1—C6—C7—N1−171.29 (17)C9—C10—C11—N1−21.88 (18)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.132.918 (2)162
O2—H2···O1ii0.822.142.914 (2)157
C10—H10···Cg2iii0.982.863.771 (2)155

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x+1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2016).

References

  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison,Wisconsin, USA.
  • Inoguchi, K. & Achiwa, K. (1990). Chem. Pharm. Bull. 38, 818–820.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nagel, U. (1984). Angew. Chem. Int. Ed.23, 435–436.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, W. & Zhang, X. (2003). Chem. Rev.103, 3029–3069. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography