PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m389.
Published online 2010 March 10. doi:  10.1107/S1600536810008299
PMCID: PMC2984004

Bis(acetonitrile-κN)(1,10-phenanthroline-κ2 N,N′)platinum(II) bis­(perchlorate)

Abstract

The asymmetric unit of the title compound, [Pt(CH3CN)2(C12H8N2)](ClO4)2, contains one half of a cationic PtII complex and pair of half perchlorate anions, one of which is disordered over two sites in a 0.53 (3):0.47 (3) ratio. The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms. In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile mol­ecules. The component ions inter­act by means of inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the synthesis of [PtCl2(phen)] (phen = 1,10-phenanthroline), see: Hodges & Rund (1975 [triangle]). For the crystal structure of [Pd(phen)(CH3CN)2](O3SCF3)2, see: Adrian et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m389-scheme1.jpg

Experimental

Crystal data

  • [Pt(C2H3N)2(C12H8N2)](ClO4)2
  • M r = 656.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m389-efi1.jpg
  • a = 9.1407 (5) Å
  • b = 11.7822 (7) Å
  • c = 18.3215 (11) Å
  • V = 1973.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.44 mm−1
  • T = 200 K
  • 0.28 × 0.12 × 0.04 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.763, T max = 1.000
  • 11860 measured reflections
  • 2043 independent reflections
  • 1540 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.100
  • S = 1.02
  • 2043 reflections
  • 176 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 2.23 e Å−3
  • Δρmin = −1.82 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond angles (°)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008299/pk2230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008299/pk2230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, [Pt(phen)(CH3CN)2](ClO4)2 (where phen is 1,10-phenanthroline, C12H8N2), contains one half of a cationic PtII complex and half a perchlorate anion (Fig. 1). The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms (Fig. 2). In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile molecules. The main contribution to the distortion is the tight N1—Pt1—N1i [symmetry code: (i) x,-y+1/2,z] chelate angle [81.9 (3)°], which results in non-linear trans arrangement [<N1—Pt1—N2i = 177.0 (2)°]. The Pt—N bond lengths are almost equal [Pt1—N(phen): 2.001 (6) Å; Pt1—N(CH3CN): 1.994 (7) Å] (Table 1). The component ions interact by means of intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2).

Experimental

To a solution of AgClO4.H2O (0.1006 g, 0.446 mmol) in CH3CN (70 ml) was added [PtCl2(phen)] (0.0996 g, 0.223 mmol) and refluxed for 7 h. The mixture was filtered to remove AgCl and then the resulting solution was dried under vacuum. The residue was washed with CH2Cl2 and dried at 50 °C, to give a pale gray powder (0.1401 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (aromatic) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (2.23 e Å-3) and the deepest hole (-1.82 e Å-3) in the difference Fourier map are located 0.86 and 0.96 Å, respectively, from the atom Pt1. The O atoms (O4, O5 and O6) of the ClO4 anion displayed relatively large displacement factors so that the anion appears to be partially disordered. The anion was modelled as disordered over two sites with a major site occupancy factor of 0.53 (3). A total of 18 restraints were used in the refinement using the following SHELXL97 (Sheldrick, 2008) commands: SAME 0.020 Cl2' > O6' and DELU 0.010 Cl2 > O6'. In addition, the displacement parameters of the major and minor component atoms Cl2 Cl2' were constrained using the EADP command.

Figures

Fig. 1.
The structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry operation and the bonds of the minor components of the disordered ClO4 ...
Fig. 2.
View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Pt(C2H3N)2(C12H8N2)](ClO4)2F(000) = 1256
Mr = 656.30Dx = 2.209 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3403 reflections
a = 9.1407 (5) Åθ = 2.2–25.0°
b = 11.7822 (7) ŵ = 7.44 mm1
c = 18.3215 (11) ÅT = 200 K
V = 1973.2 (2) Å3Rod, colorless
Z = 40.28 × 0.12 × 0.04 mm

Data collection

Bruker SMART 1000 CCD diffractometer2043 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
graphiteRint = 0.087
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→7
Tmin = 0.763, Tmax = 1.000k = −14→14
11860 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3
2043 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 2.23 e Å3
18 restraintsΔρmin = −1.82 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pt10.96551 (5)0.25000.10603 (2)0.02158 (17)
N10.8473 (6)0.1387 (5)0.0483 (3)0.0219 (14)
N21.0774 (7)0.1326 (5)0.1611 (4)0.0278 (16)
C10.8490 (8)0.0253 (6)0.0516 (4)0.0264 (18)
H10.9141−0.01110.08450.032*
C20.7580 (9)−0.0405 (7)0.0081 (5)0.034 (2)
H20.7628−0.12090.01100.041*
C30.6622 (9)0.0097 (7)−0.0387 (5)0.031 (2)
H30.5999−0.0355−0.06820.038*
C40.6557 (8)0.1302 (7)−0.0431 (5)0.0304 (19)
C50.7512 (7)0.1902 (6)0.0018 (4)0.0229 (17)
C60.5587 (9)0.1932 (8)−0.0901 (4)0.034 (2)
H60.49370.1535−0.12150.041*
C71.2397 (10)0.0000 (8)0.2375 (5)0.040 (2)
H7A1.2170−0.07910.22540.061*
H7B1.22170.01290.28960.061*
H7C1.34270.01540.22640.061*
C81.1474 (8)0.0750 (6)0.1947 (4)0.0255 (18)
Cl10.4808 (3)0.25000.14861 (16)0.0273 (6)
O10.3890 (9)0.25000.2122 (5)0.040 (2)
O20.3939 (10)0.25000.0837 (4)0.040 (2)
O30.5699 (7)0.1506 (6)0.1490 (4)0.0515 (19)
Cl20.430 (2)0.75000.341 (4)0.033 (2)0.53 (3)
O40.272 (2)0.75000.340 (2)0.080 (10)0.53 (3)
O50.468 (3)0.75000.4176 (11)0.088 (10)0.53 (3)
O60.4825 (19)0.6495 (12)0.3106 (12)0.077 (8)0.53 (3)
Cl2'0.461 (3)0.75000.340 (4)0.033 (2)0.47 (3)
O4'0.312 (3)0.75000.365 (2)0.068 (10)0.47 (3)
O5'0.453 (3)0.75000.2625 (11)0.111 (15)0.47 (3)
O6'0.5367 (19)0.6564 (15)0.3651 (15)0.073 (8)0.47 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.0226 (3)0.0172 (2)0.0250 (3)0.000−0.00007 (19)0.000
N10.027 (4)0.014 (3)0.025 (4)−0.002 (2)0.003 (3)−0.003 (3)
N20.032 (4)0.020 (3)0.031 (4)−0.005 (3)−0.005 (3)−0.003 (3)
C10.026 (4)0.022 (4)0.031 (5)0.004 (3)0.001 (3)−0.005 (3)
C20.038 (5)0.020 (4)0.044 (6)−0.006 (4)0.006 (4)−0.006 (4)
C30.031 (5)0.030 (5)0.034 (5)−0.012 (4)0.003 (4)−0.010 (4)
C40.028 (5)0.033 (5)0.030 (5)0.001 (3)−0.004 (4)−0.006 (4)
C50.019 (4)0.027 (4)0.022 (4)0.000 (3)0.003 (3)0.002 (3)
C60.037 (5)0.057 (6)0.008 (4)−0.011 (4)0.000 (3)−0.005 (3)
C70.047 (6)0.038 (5)0.036 (6)0.012 (4)−0.012 (4)0.002 (4)
C80.025 (4)0.020 (4)0.032 (5)−0.001 (3)−0.002 (4)0.000 (4)
Cl10.0272 (14)0.0256 (14)0.0292 (17)0.000−0.0033 (12)0.000
O10.038 (5)0.039 (5)0.042 (6)0.0000.004 (4)0.000
O20.055 (6)0.031 (5)0.035 (5)0.000−0.014 (4)0.000
O30.058 (4)0.055 (4)0.041 (4)0.033 (3)−0.003 (3)−0.003 (3)
Cl20.030 (7)0.0226 (15)0.047 (3)0.000−0.003 (11)0.000
O40.031 (9)0.077 (18)0.13 (3)0.000−0.017 (11)0.000
O50.11 (2)0.09 (2)0.063 (10)0.000−0.040 (13)0.000
O60.072 (11)0.034 (8)0.124 (19)0.002 (8)0.025 (12)−0.031 (10)
Cl2'0.030 (7)0.0226 (15)0.047 (3)0.000−0.003 (11)0.000
O4'0.023 (11)0.09 (2)0.09 (2)0.0000.005 (13)0.000
O5'0.09 (2)0.21 (4)0.034 (9)0.000−0.016 (11)0.000
O6'0.057 (11)0.037 (10)0.12 (2)0.013 (8)0.007 (11)0.028 (12)

Geometric parameters (Å, °)

Pt1—N2i1.994 (7)C6—H60.9500
Pt1—N21.994 (7)C7—C81.452 (11)
Pt1—N12.001 (6)C7—H7A0.9800
Pt1—N1i2.001 (6)C7—H7B0.9800
N1—C11.337 (9)C7—H7C0.9800
N1—C51.366 (9)Cl1—O3i1.427 (6)
N2—C81.118 (9)Cl1—O31.427 (6)
C1—C21.388 (11)Cl1—O21.430 (9)
C1—H10.9500Cl1—O11.436 (9)
C2—C31.360 (12)Cl2—O6ii1.40 (3)
C2—H20.9500Cl2—O61.40 (3)
C3—C41.424 (11)Cl2—O51.44 (7)
C3—H30.9500Cl2—O41.44 (2)
C4—C51.392 (10)Cl2'—O6'ii1.38 (3)
C4—C61.442 (11)Cl2'—O6'1.38 (3)
C5—C5i1.410 (14)Cl2'—O5'1.42 (8)
C6—C6i1.338 (19)Cl2'—O4'1.44 (2)
N2i—Pt1—N287.9 (3)C4—C6—H6119.5
N2i—Pt1—N1177.0 (2)C8—C7—H7A109.5
N2—Pt1—N195.1 (2)C8—C7—H7B109.5
N2i—Pt1—N1i95.1 (2)H7A—C7—H7B109.5
N2—Pt1—N1i177.0 (2)C8—C7—H7C109.5
N1—Pt1—N1i81.9 (3)H7A—C7—H7C109.5
C1—N1—C5118.6 (6)H7B—C7—H7C109.5
C1—N1—Pt1128.7 (5)N2—C8—C7179.2 (9)
C5—N1—Pt1112.7 (5)O3i—Cl1—O3110.4 (6)
C8—N2—Pt1173.4 (6)O3i—Cl1—O2108.7 (3)
N1—C1—C2121.7 (7)O3—Cl1—O2108.7 (3)
N1—C1—H1119.1O3i—Cl1—O1109.3 (3)
C2—C1—H1119.1O3—Cl1—O1109.3 (3)
C3—C2—C1120.3 (8)O2—Cl1—O1110.5 (6)
C3—C2—H2119.9O6ii—Cl2—O6116 (4)
C1—C2—H2119.9O6ii—Cl2—O5108 (3)
C2—C3—C4119.7 (7)O6—Cl2—O5108 (3)
C2—C3—H3120.1O6ii—Cl2—O4110 (2)
C4—C3—H3120.1O6—Cl2—O4110 (2)
C5—C4—C3116.5 (7)O5—Cl2—O4105 (3)
C5—C4—C6118.5 (7)O6'ii—Cl2'—O6'106 (4)
C3—C4—C6125.0 (8)O6'ii—Cl2'—O5'111 (3)
N1—C5—C4123.1 (7)O6'—Cl2'—O5'111 (3)
N1—C5—C5i116.3 (4)O6'ii—Cl2'—O4'111 (3)
C4—C5—C5i120.5 (5)O6'—Cl2'—O4'111 (3)
C6i—C6—C4121.0 (5)O5'—Cl2'—O4'106 (4)
C6i—C6—H6119.5
N2—Pt1—N1—C11.5 (7)C1—N1—C5—C4−0.7 (11)
N1i—Pt1—N1—C1−178.3 (5)Pt1—N1—C5—C4−179.0 (6)
N2—Pt1—N1—C5179.6 (5)C1—N1—C5—C5i178.5 (5)
N1i—Pt1—N1—C5−0.2 (6)Pt1—N1—C5—C5i0.2 (5)
C5—N1—C1—C21.2 (11)C3—C4—C5—N1−0.1 (11)
Pt1—N1—C1—C2179.2 (6)C6—C4—C5—N1179.9 (7)
N1—C1—C2—C3−1.0 (12)C3—C4—C5—C5i−179.2 (5)
C1—C2—C3—C40.2 (12)C6—C4—C5—C5i0.8 (9)
C2—C3—C4—C50.3 (12)C5—C4—C6—C6i−0.8 (9)
C2—C3—C4—C6−179.7 (8)C3—C4—C6—C6i179.2 (6)

Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O6iii0.952.603.48 (2)155
C3—H3···O2iv0.952.543.210 (8)127
C3—H3···O3v0.952.543.486 (11)178
C7—H7A···O6iii0.982.393.066 (18)126
C7—H7B···O3vi0.982.413.143 (11)131

Symmetry codes: (iii) x+1/2, −y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z; (v) −x+1, −y, −z; (vi) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2230).

References

  • Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266. [PMC free article] [PubMed]
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hodges, K. D. & Rund, J. V. (1975). Inorg. Chem.14, 525–528.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography