PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m470.
Published online 2010 March 31. doi:  10.1107/S1600536810011323
PMCID: PMC2984003

Bis[μ-4-hydr­oxy-N′-(4-meth­oxy-2-oxido­benzyl­idene)benzohydrazidato]bis­[pyridine­copper(II)]

Abstract

In the title compound, [Cu2(C15H12N2O4)2(C6H5N)2], each CuII atom is chelated by the tridentate doubly deprotonated Schiff base and a pyridine mol­ecule in a nearly planar environment (r.m.s. deviation for all non-H atoms = 0.107 Å). The metal ions are bridged by one O atom from the symmetry-related Schiff base ligands, forming a centrosymmetric dinuclear copper(II) complex. The dimeric complex is linked to another dimer via weaker Cu—O inter­actions and also O—H(...)N hydrogen bonds.

Related literature

For the crystal structure of the monohydrated Schiff base ligand, see: Mohd Lair et al. (2009a [triangle]). For the structure of the pyridine adduct of the copper complex of the 4-nitro analog, see: Mohd Lair et al. (2009b [triangle]). For the crystal structure of a dinuclear copper(II) salphen complex with a similar coordin­ation, see: Yu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m470-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C15H12N2O4)2(C6H5N)2]
  • M r = 853.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m470-efi1.jpg
  • a = 13.3666 (3) Å
  • b = 7.9402 (2) Å
  • c = 16.7229 (3) Å
  • β = 94.775 (1)°
  • V = 1768.70 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 100 K
  • 0.26 × 0.12 × 0.01 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.734, T max = 0.991
  • 10121 measured reflections
  • 4035 independent reflections
  • 3473 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.075
  • S = 1.01
  • 4035 reflections
  • 257 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011323/om2326sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011323/om2326Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

supplementary crystallographic information

Comment

The title compound is the pyridine adduct of the copper complex of 4-hydroxy-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide. In the asymmetric unit, which contains one half of the formula unit, the copper ion is four coordinated in an approximately planar environment, the highest deviation from the best plane passing through all non-H atoms being 0.348 (2) Å for O2. From this point of view, it is similar to the structure of the 4-nitrated analogous compound (Mohd Lair et al. 2009b). However, replacement of the electron-withdrawing nitro group by a hydroxy group resulted in bridging the copper ions by O2 atoms from the symmetry related Schiff bases at (-x+1, -y+2, -z), forming a centrosymmetric dinuclear CuII complex. The distance of Cu1—O2i is 2.778 (1) Å which is similar to the length of the Cu—O bridge (2.783 Å) in the dinuclear copper (II) salphen complex (Yu et al. 2008). Morever, there is a weak interaction between the copper ions and O3 atoms from the symmetry related molecules at (-x+1, -y+1, -z) with Cu1—O3iii distance of 3.576 (2) Å, which binds the molecules in one-dimensional infinite chains. Intermolecular hydrogen bonds between the hydroxy groups and the imine N atoms of the neighboring molecules connect the complexes to each other.

Experimental

The Schiff base ligand was prepared as reported previously (Mohd Lairet al., 2009a). A mixture of the Schiff base (0.57 g, 2 mmol) and copper(II) acetate monohydrate (0.4 g, 2 mmol) in the presence of a few drops of triethylamine was refluxed in ethanol (100 ml) for 5 hours. The resulting green precipitate was then filtered, washed with ethanol and dried over silica gel. The green crystal of the title compound was obtained by slow evaporation of a pyridine solution of the compound.

Refinement

A low angle reflection, (-1 0 1), probably affected by extinction, was omitted from the dataset. C-bound hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å), and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The hydroxy H-atom was located in a difference Fourier map, and was refined with distance restraints of O–H 0.84±0.01 Å.

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound at 60% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
A view of the interaction between Cu1 and O3 from the symmetry related molecule at (-x+1, -y+1, -z). Hydrogen atoms have been omitted for clarity.

Crystal data

[Cu2(C15H12N2O4)2(C6H5N)2]F(000) = 876
Mr = 853.83Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4307 reflections
a = 13.3666 (3) Åθ = 2.8–30.2°
b = 7.9402 (2) ŵ = 1.27 mm1
c = 16.7229 (3) ÅT = 100 K
β = 94.775 (1)°Lath, pale green
V = 1768.70 (7) Å30.26 × 0.12 × 0.01 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer4035 independent reflections
Radiation source: fine-focus sealed tube3473 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→17
Tmin = 0.734, Tmax = 0.991k = −7→10
10121 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0332P)2 + 1.6174P] where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.511594 (16)0.77247 (3)−0.003528 (13)0.01666 (8)
O10.36136 (10)1.26026 (19)0.39906 (8)0.0223 (3)
H10.3017 (9)1.277 (3)0.4068 (15)0.033*
O20.49690 (10)0.92300 (18)0.08564 (8)0.0189 (3)
O30.51275 (10)0.62681 (19)−0.09181 (8)0.0231 (3)
O40.39119 (10)0.28970 (18)−0.31267 (8)0.0226 (3)
N10.33448 (12)0.8237 (2)0.07305 (9)0.0165 (3)
N20.37010 (11)0.74438 (19)0.00604 (9)0.0159 (3)
N30.66146 (12)0.7893 (2)0.00376 (9)0.0169 (3)
C10.36838 (14)1.1762 (2)0.32891 (11)0.0178 (4)
C20.28481 (14)1.1087 (2)0.28451 (11)0.0191 (4)
H20.22001.12060.30320.023*
C30.29600 (14)1.0246 (2)0.21334 (11)0.0178 (4)
H30.23850.98000.18340.021*
C40.39081 (14)1.0044 (2)0.18485 (11)0.0166 (4)
C50.47366 (14)1.0747 (3)0.22963 (11)0.0207 (4)
H50.53851.06420.21080.025*
C60.46282 (14)1.1589 (3)0.30079 (11)0.0213 (4)
H60.52001.20510.33050.026*
C70.40775 (14)0.9119 (2)0.11040 (10)0.0165 (4)
C80.30712 (14)0.6628 (2)−0.04221 (11)0.0171 (4)
H80.23840.6637−0.03160.021*
C90.33470 (14)0.5707 (2)−0.11095 (11)0.0168 (4)
C100.25867 (14)0.4850 (2)−0.15879 (11)0.0192 (4)
H100.19140.4927−0.14480.023*
C110.27833 (14)0.3915 (3)−0.22433 (11)0.0206 (4)
H110.22580.3346−0.25520.025*
C120.37823 (14)0.3815 (2)−0.24505 (11)0.0188 (4)
C130.45461 (14)0.4615 (3)−0.20009 (11)0.0197 (4)
H130.52140.4524−0.21510.024*
C140.43541 (14)0.5572 (2)−0.13177 (11)0.0182 (4)
C150.48858 (15)0.2908 (3)−0.34204 (12)0.0251 (4)
H15A0.50920.4073−0.35090.038*
H15B0.48650.2286−0.39280.038*
H15C0.53680.2373−0.30260.038*
C160.71550 (15)0.7054 (3)−0.04781 (11)0.0201 (4)
H160.68100.6402−0.08900.024*
C170.81867 (15)0.7103 (3)−0.04325 (12)0.0239 (4)
H170.85430.6481−0.08030.029*
C180.87010 (15)0.8063 (3)0.01561 (12)0.0249 (4)
H180.94130.81240.01960.030*
C190.81467 (15)0.8934 (3)0.06856 (12)0.0249 (4)
H190.84750.96120.10950.030*
C200.71148 (15)0.8808 (3)0.06130 (11)0.0207 (4)
H200.67440.93940.09860.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01512 (12)0.01935 (13)0.01608 (12)0.00010 (9)0.00468 (8)−0.00223 (9)
O10.0198 (7)0.0291 (8)0.0184 (7)0.0027 (6)0.0046 (5)−0.0057 (6)
O20.0171 (6)0.0236 (7)0.0171 (6)−0.0008 (6)0.0066 (5)−0.0034 (6)
O30.0162 (6)0.0304 (8)0.0231 (7)−0.0017 (6)0.0048 (5)−0.0092 (6)
O40.0235 (7)0.0255 (8)0.0196 (7)−0.0019 (6)0.0061 (5)−0.0054 (6)
N10.0192 (7)0.0173 (8)0.0139 (7)0.0010 (6)0.0069 (6)0.0004 (6)
N20.0175 (7)0.0155 (8)0.0154 (7)0.0010 (6)0.0063 (6)0.0004 (6)
N30.0175 (7)0.0172 (8)0.0162 (7)0.0013 (6)0.0031 (6)0.0023 (6)
C10.0223 (9)0.0170 (9)0.0147 (8)0.0032 (7)0.0045 (7)0.0009 (7)
C20.0159 (9)0.0220 (10)0.0204 (9)0.0018 (7)0.0068 (7)−0.0001 (8)
C30.0176 (9)0.0166 (10)0.0195 (9)−0.0011 (7)0.0029 (7)−0.0005 (7)
C40.0194 (9)0.0156 (9)0.0154 (8)0.0015 (7)0.0041 (7)0.0024 (7)
C50.0169 (9)0.0262 (11)0.0196 (9)0.0003 (8)0.0051 (7)0.0005 (8)
C60.0175 (9)0.0262 (11)0.0202 (9)−0.0003 (8)0.0015 (7)−0.0016 (8)
C70.0196 (9)0.0158 (10)0.0147 (8)0.0019 (7)0.0055 (7)0.0043 (7)
C80.0176 (9)0.0153 (9)0.0192 (9)−0.0003 (7)0.0064 (7)0.0034 (7)
C90.0201 (9)0.0141 (9)0.0165 (8)−0.0002 (7)0.0038 (7)0.0018 (7)
C100.0167 (9)0.0196 (10)0.0219 (9)−0.0007 (7)0.0059 (7)0.0022 (8)
C110.0202 (9)0.0212 (10)0.0202 (9)−0.0032 (8)0.0015 (7)−0.0002 (8)
C120.0248 (10)0.0155 (9)0.0166 (9)0.0006 (7)0.0054 (7)0.0010 (7)
C130.0169 (9)0.0217 (10)0.0213 (9)0.0006 (7)0.0058 (7)−0.0014 (8)
C140.0204 (9)0.0164 (9)0.0182 (9)0.0001 (7)0.0042 (7)0.0013 (7)
C150.0250 (10)0.0289 (11)0.0224 (10)0.0032 (9)0.0084 (8)−0.0036 (9)
C160.0221 (9)0.0211 (10)0.0176 (9)−0.0010 (8)0.0048 (7)−0.0016 (8)
C170.0206 (9)0.0296 (11)0.0225 (9)0.0012 (8)0.0074 (8)−0.0028 (8)
C180.0184 (9)0.0343 (12)0.0221 (9)−0.0018 (9)0.0027 (7)0.0000 (9)
C190.0231 (10)0.0305 (12)0.0209 (9)−0.0016 (9)0.0006 (8)−0.0048 (8)
C200.0222 (9)0.0219 (10)0.0184 (9)0.0018 (8)0.0043 (7)−0.0005 (8)

Geometric parameters (Å, °)

Cu1—O31.8765 (14)C5—H50.9500
Cu1—N21.9242 (15)C6—H60.9500
Cu1—O21.9338 (13)C8—C91.436 (3)
Cu1—N32.0012 (16)C8—H80.9500
Cu1—O2i2.7784 (14)C9—C101.414 (3)
O1—C11.360 (2)C9—C141.422 (3)
O1—H10.830 (10)C10—C111.367 (3)
O2—C71.297 (2)C10—H100.9500
O3—C141.306 (2)C11—C121.409 (3)
O4—C121.368 (2)C11—H110.9500
O4—C151.429 (2)C12—C131.372 (3)
N1—C71.318 (2)C13—C141.413 (3)
N1—N21.403 (2)C13—H130.9500
N2—C81.291 (2)C15—H15A0.9800
N3—C201.340 (2)C15—H15B0.9800
N3—C161.346 (2)C15—H15C0.9800
C1—C61.390 (3)C16—C171.375 (3)
C1—C21.396 (3)C16—H160.9500
C2—C31.384 (3)C17—C181.382 (3)
C2—H20.9500C17—H170.9500
C3—C41.400 (3)C18—C191.386 (3)
C3—H30.9500C18—H180.9500
C4—C51.400 (3)C19—C201.378 (3)
C4—C71.479 (2)C19—H190.9500
C5—C61.383 (3)C20—H200.9500
O3—Cu1—N293.82 (6)N2—C8—C9123.94 (17)
O3—Cu1—O2174.65 (6)N2—C8—H8118.0
N2—Cu1—O281.02 (6)C9—C8—H8118.0
O3—Cu1—N390.87 (6)C10—C9—C14118.39 (17)
N2—Cu1—N3171.29 (6)C10—C9—C8118.51 (16)
O2—Cu1—N394.43 (6)C14—C9—C8123.06 (17)
O3—Cu1—O2i98.64 (5)C11—C10—C9122.52 (17)
N2—Cu1—O2i98.16 (5)C11—C10—H10118.7
O2—Cu1—O2i80.83 (5)C9—C10—H10118.7
N3—Cu1—O2i88.37 (5)C10—C11—C12118.48 (18)
C1—O1—H1110.6 (18)C10—C11—H11120.8
C7—O2—Cu1111.04 (12)C12—C11—H11120.8
C14—O3—Cu1127.26 (12)O4—C12—C13124.03 (17)
C12—O4—C15117.55 (15)O4—C12—C11114.89 (17)
C7—N1—N2109.19 (14)C13—C12—C11121.07 (17)
C8—N2—N1118.52 (15)C12—C13—C14120.99 (17)
C8—N2—Cu1126.91 (13)C12—C13—H13119.5
N1—N2—Cu1114.57 (11)C14—C13—H13119.5
C20—N3—C16117.79 (17)O3—C14—C13116.87 (16)
C20—N3—Cu1121.15 (13)O3—C14—C9124.60 (17)
C16—N3—Cu1121.04 (13)C13—C14—C9118.53 (17)
O1—C1—C6118.04 (17)O4—C15—H15A109.5
O1—C1—C2122.52 (16)O4—C15—H15B109.5
C6—C1—C2119.43 (17)H15A—C15—H15B109.5
C3—C2—C1120.25 (17)O4—C15—H15C109.5
C3—C2—H2119.9H15A—C15—H15C109.5
C1—C2—H2119.9H15B—C15—H15C109.5
C2—C3—C4120.92 (17)N3—C16—C17122.65 (18)
C2—C3—H3119.5N3—C16—H16118.7
C4—C3—H3119.5C17—C16—H16118.7
C3—C4—C5118.07 (17)C16—C17—C18119.48 (18)
C3—C4—C7123.35 (17)C16—C17—H17120.3
C5—C4—C7118.58 (16)C18—C17—H17120.3
C6—C5—C4121.20 (17)C17—C18—C19118.02 (19)
C6—C5—H5119.4C17—C18—H18121.0
C4—C5—H5119.4C19—C18—H18121.0
C5—C6—C1120.12 (18)C20—C19—C18119.46 (19)
C5—C6—H6119.9C20—C19—H19120.3
C1—C6—H6119.9C18—C19—H19120.3
O2—C7—N1123.45 (16)N3—C20—C19122.60 (18)
O2—C7—C4116.35 (16)N3—C20—H20118.7
N1—C7—C4120.20 (16)C19—C20—H20118.7

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.83 (1)1.91 (1)2.743 (2)178 (3)

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2326).

References

  • Barbour, L. J. (2001). J. Supramol. Chem 1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, m121. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.
  • Yu, G., Ding, Y., Wang, L., Fu, Z. & Hu, X. (2008). Acta Cryst E64, m504. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography