PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o761.
Published online 2010 March 6. doi:  10.1107/S1600536810007828
PMCID: PMC2984001

(2E)-3-(2-Chloro-6-methyl-3-quinol­yl)-1-(1-naphth­yl)prop-2-en-1-one

Abstract

In the title mol­ecule, C23H16ClNO, the quinoline and naphthalene ring systems are individually planar, with maximum deviations of 0.020 (2) and 0.033 (2) Å, respectively, and are inclined at a dihedral angle of 30.01 (4)°. Intra­molecular C—H(...)O and C—H(...)Cl inter­actions occur. The crystal structure is devoid of any classical hydrogen bonds, but symmetry-related mol­ecules are linked via weak C—H(...)Cl inter­actions, forming chains propagating in [001].

Related literature

For background literature on chalcones, see: Drexler & Amiridis (2003 [triangle]); Opletalova & Sedivy (1999 [triangle]); Oyedapo et al. (2004 [triangle]); Prabhavat & Ghiya (1998 [triangle]); Varga et al. (2003 [triangle]). For bond distances, see: Allen (2002 [triangle]). For the preparation of 2-chloro-6-methyl-3-formyl­quinoline, see: Meth-Cohn et al. (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o761-scheme1.jpg

Experimental

Crystal data

  • C23H16ClNO
  • M r = 357.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o761-efi1.jpg
  • a = 16.919 (8) Å
  • b = 7.146 (3) Å
  • c = 14.829 (5) Å
  • β = 103.29 (2)°
  • V = 1744.9 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 173 K
  • 0.14 × 0.12 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.968, T max = 0.989
  • 6886 measured reflections
  • 3988 independent reflections
  • 2575 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.131
  • S = 1.01
  • 3988 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007828/su2165sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007828/su2165Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for a grant to carry out this work.

supplementary crystallographic information

Comment

1,3-Diaryl-2-propen-1-ones, commonly known as chalcones, are normally synthesized by Claisen-Schmidt condensation (Oyedapo et al., 2004). They are used as precursors to synthesize many heterocyclic compounds like flavonoids (Drexler & Amiridis, 2003), pyrimidines, imidazoles (Varga et al., 2003) etc. Chalcones have already been recognized as anti-bacterial, anti-tuberculous, anti-tumor, anti-inflammatory, anti-viral, anti-microbial and anti-protozoal gastroprotective agents (Opletalova & Sedivy, 1999). They may also be converted to 2-mercaptopyrimidines, which have anti-cancer, anti-tubercular and anti-AIDS activities, by the reaction with thiourea (Prabhavat & Ghiya, 1998). A series of similar chalcones is under investigation in our laboratory for their biological activities. We report here on the synthesis and crystal structure of a new chalcone, containing a quinolyl ring system, (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(naphthalen-1-yl)prop-2-en-1-one.

The title molecule is presented in Fig. 1. The bond distances are as expected (Allen, 2002). The mean planes of the quinoline and naphthalene rings, defined by atoms N1/C1—C9 and C14—C23, respectively, are individually planar with maximum deviations of 0.020 (2) and 0.033 (2) Å, respectively. These planes are inclined at 30.01 (4)° with respect to each other.

The crystal structure is devoid of any classical hydrogen bonds, however in the molecule itself short intramolecular interactions involving atoms Cl1 and O1 are present (Table 1). In the crystal structure a weak C-H···Cl interaction links the molecules to form chains propagating in [001]; see Table 1 and Fig. 2 for details.

Experimental

2-Chloro-6-methyl-3-formylquinoline was prepared by the literature procedure (Meth-Cohn et al., 1981). A mixture of 2-chloro-6-methyl-3-formylquinoline (2.055 g, 10.0 mmol), 1-acetylnaphthalene (1.7021 g, 10.0 mmol) and methanol (50 ml) was stirred at RT, and an aqueous solution of sodium hydroxide (4.0 ml, 10 %) was added dropwise. The mixture was stirred overnight and was then pored into ice-cold water (200 ml). The precipitates obtained were collected by filtration, washed first with cold water and then with cold methanol. Recrystallization from chloroform gave pale-yellow crystals (yield: 2.90 g; 8.11 mmol, 81.0%), (m.p. 433-435 K).

Refinement

Although all of the H atoms could be located in the difference Fourier maps they were included at geometrically idealized positions and refined in the riding-model approximation: C—H = 0.95 and 0.98 Å for aromatic and methyl H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A view along the b-axis of the crystal packing of the title compound, showing the C—H···Cl interactions as dashed lines [see Table 1 for details; H-atoms not involved in hydrogen bonds have been omitted for clarity].

Crystal data

C23H16ClNOF(000) = 744
Mr = 357.82Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6886 reflections
a = 16.919 (8) Åθ = 2.8–27.5°
b = 7.146 (3) ŵ = 0.23 mm1
c = 14.829 (5) ÅT = 173 K
β = 103.29 (2)°Plate, light yellow
V = 1744.9 (13) Å30.14 × 0.12 × 0.05 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3988 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2σ(I)
graphiteRint = 0.039
ω and [var phi] scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −21→21
Tmin = 0.968, Tmax = 0.989k = −8→9
6886 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.131H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0545P)2 + 0.6476P] where P = (Fo2 + 2Fc2)/3
3988 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.05985 (4)0.69090 (9)0.33367 (3)0.0466 (2)
O10.29189 (9)0.9031 (2)0.21743 (9)0.0428 (4)
N1−0.07435 (11)0.6646 (3)0.20914 (11)0.0364 (4)
C1−0.12197 (12)0.6652 (3)0.11997 (13)0.0319 (5)
C2−0.20482 (13)0.6170 (3)0.10550 (15)0.0378 (5)
H2−0.22750.58740.15670.045*
C3−0.25230 (13)0.6132 (3)0.01723 (15)0.0374 (5)
H3−0.30800.58010.00810.045*
C4−0.22076 (13)0.6572 (3)−0.06116 (14)0.0353 (5)
C5−0.14061 (13)0.7047 (3)−0.04742 (14)0.0344 (5)
H5−0.11900.7363−0.09920.041*
C6−0.08912 (13)0.7078 (3)0.04277 (13)0.0314 (5)
C7−0.00604 (13)0.7522 (3)0.05985 (14)0.0338 (5)
H70.01720.78350.00920.041*
C80.04260 (13)0.7514 (3)0.14841 (13)0.0317 (5)
C90.00187 (13)0.7035 (3)0.21931 (13)0.0328 (5)
C10−0.27558 (15)0.6499 (4)−0.15703 (16)0.0481 (6)
H10A−0.24520.6896−0.20260.058*
H10B−0.32190.7338−0.16000.058*
H10C−0.29520.5217−0.17080.058*
C110.12863 (13)0.8006 (3)0.16855 (13)0.0340 (5)
H110.15330.83440.23060.041*
C120.17573 (13)0.8023 (3)0.10796 (14)0.0338 (5)
H120.15350.76960.04520.041*
C130.26277 (13)0.8548 (3)0.13762 (13)0.0322 (5)
C140.31294 (12)0.8425 (3)0.06743 (13)0.0295 (5)
C150.27849 (14)0.8918 (3)−0.02286 (13)0.0361 (5)
H150.22310.9285−0.03900.043*
C160.32305 (16)0.8890 (4)−0.09110 (15)0.0551 (7)
H160.29830.9253−0.15280.066*
C170.40178 (17)0.8344 (5)−0.06904 (16)0.0718 (10)
H170.43160.8325−0.11600.086*
C180.44086 (14)0.7800 (4)0.02193 (15)0.0489 (7)
C190.52216 (17)0.7176 (5)0.04411 (19)0.0776 (11)
H190.55200.7158−0.00290.093*
C200.55878 (16)0.6603 (5)0.13079 (18)0.0637 (8)
H200.61360.61910.14430.076*
C210.51529 (14)0.6622 (3)0.19988 (16)0.0439 (6)
H210.54070.62110.26050.053*
C220.43669 (13)0.7222 (3)0.18163 (14)0.0361 (5)
H220.40840.72250.23000.043*
C230.39635 (12)0.7843 (3)0.09213 (13)0.0309 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0431 (4)0.0673 (4)0.0265 (3)−0.0126 (3)0.0024 (2)0.0045 (3)
O10.0350 (9)0.0637 (11)0.0287 (7)−0.0057 (8)0.0053 (6)−0.0084 (7)
N10.0347 (11)0.0459 (11)0.0292 (9)−0.0018 (9)0.0088 (7)0.0014 (8)
C10.0296 (12)0.0357 (12)0.0304 (10)0.0007 (9)0.0069 (8)−0.0012 (9)
C20.0325 (12)0.0425 (14)0.0404 (11)0.0001 (10)0.0122 (9)0.0013 (10)
C30.0278 (12)0.0360 (13)0.0471 (12)0.0011 (10)0.0056 (9)−0.0001 (10)
C40.0336 (12)0.0302 (12)0.0387 (11)0.0032 (9)0.0014 (9)−0.0003 (9)
C50.0365 (13)0.0357 (12)0.0306 (10)−0.0006 (10)0.0071 (9)0.0002 (9)
C60.0310 (12)0.0334 (12)0.0301 (10)0.0008 (9)0.0074 (8)−0.0015 (9)
C70.0340 (12)0.0409 (13)0.0282 (10)−0.0013 (10)0.0107 (8)−0.0011 (9)
C80.0301 (11)0.0371 (12)0.0284 (10)−0.0013 (9)0.0081 (8)−0.0031 (9)
C90.0329 (12)0.0396 (13)0.0256 (9)−0.0005 (10)0.0059 (8)−0.0007 (9)
C100.0419 (14)0.0500 (15)0.0448 (13)−0.0038 (12)−0.0056 (11)0.0043 (11)
C110.0318 (12)0.0404 (13)0.0287 (10)−0.0021 (10)0.0043 (8)−0.0006 (9)
C120.0298 (11)0.0418 (13)0.0284 (9)−0.0005 (10)0.0041 (8)−0.0034 (9)
C130.0297 (12)0.0363 (12)0.0294 (10)−0.0014 (9)0.0041 (8)−0.0007 (9)
C140.0277 (11)0.0319 (12)0.0277 (9)−0.0013 (9)0.0039 (8)−0.0022 (8)
C150.0323 (12)0.0427 (13)0.0309 (10)0.0031 (10)0.0023 (9)0.0004 (9)
C160.0447 (15)0.093 (2)0.0267 (11)0.0093 (14)0.0061 (10)0.0086 (12)
C170.0466 (17)0.142 (3)0.0321 (12)0.0179 (18)0.0187 (11)0.0051 (16)
C180.0329 (13)0.080 (2)0.0340 (11)0.0100 (13)0.0085 (9)−0.0020 (12)
C190.0408 (16)0.148 (3)0.0466 (14)0.0298 (19)0.0155 (12)−0.0024 (18)
C200.0354 (15)0.094 (2)0.0567 (16)0.0209 (15)0.0012 (12)−0.0071 (15)
C210.0383 (14)0.0456 (14)0.0409 (12)0.0005 (11)−0.0051 (10)0.0013 (11)
C220.0321 (12)0.0404 (13)0.0335 (11)−0.0040 (10)0.0025 (9)0.0028 (9)
C230.0281 (11)0.0341 (12)0.0290 (10)−0.0021 (9)0.0035 (8)−0.0033 (9)

Geometric parameters (Å, °)

Cl1—C91.755 (2)C11—H110.9500
O1—C131.222 (2)C12—C131.485 (3)
N1—C91.294 (3)C12—H120.9500
N1—C11.381 (3)C13—C141.489 (3)
C1—C21.411 (3)C14—C151.378 (3)
C1—C61.416 (3)C14—C231.436 (3)
C2—C31.370 (3)C15—C161.394 (3)
C2—H20.9500C15—H150.9500
C3—C41.421 (3)C16—C171.354 (4)
C3—H30.9500C16—H160.9500
C4—C51.367 (3)C17—C181.414 (3)
C4—C101.509 (3)C17—H170.9500
C5—C61.419 (3)C18—C191.411 (4)
C5—H50.9500C18—C231.418 (3)
C6—C71.406 (3)C19—C201.356 (4)
C7—C81.380 (3)C19—H190.9500
C7—H70.9500C20—C211.392 (4)
C8—C91.425 (3)C20—H200.9500
C8—C111.460 (3)C21—C221.364 (3)
C10—H10A0.9800C21—H210.9500
C10—H10B0.9800C22—C231.417 (3)
C10—H10C0.9800C22—H220.9500
C11—C121.331 (3)
C9—N1—C1117.22 (17)C11—C12—C13120.61 (18)
N1—C1—C2119.03 (18)C11—C12—H12119.7
N1—C1—C6121.58 (19)C13—C12—H12119.7
C2—C1—C6119.37 (18)O1—C13—C12120.64 (19)
C3—C2—C1119.6 (2)O1—C13—C14121.71 (19)
C3—C2—H2120.2C12—C13—C14117.64 (17)
C1—C2—H2120.2C15—C14—C23119.57 (18)
C2—C3—C4122.0 (2)C15—C14—C13118.85 (19)
C2—C3—H3119.0C23—C14—C13121.57 (17)
C4—C3—H3119.0C14—C15—C16121.6 (2)
C5—C4—C3118.63 (19)C14—C15—H15119.2
C5—C4—C10121.5 (2)C16—C15—H15119.2
C3—C4—C10119.9 (2)C17—C16—C15119.7 (2)
C4—C5—C6121.2 (2)C17—C16—H16120.2
C4—C5—H5119.4C15—C16—H16120.2
C6—C5—H5119.4C16—C17—C18121.9 (2)
C7—C6—C1117.71 (18)C16—C17—H17119.1
C7—C6—C5123.03 (19)C18—C17—H17119.1
C1—C6—C5119.26 (19)C19—C18—C17121.8 (2)
C8—C7—C6121.54 (19)C19—C18—C23119.3 (2)
C8—C7—H7119.2C17—C18—C23118.9 (2)
C6—C7—H7119.2C20—C19—C18121.7 (2)
C7—C8—C9114.79 (19)C20—C19—H19119.2
C7—C8—C11122.81 (19)C18—C19—H19119.2
C9—C8—C11122.37 (18)C19—C20—C21119.4 (2)
N1—C9—C8127.14 (18)C19—C20—H20120.3
N1—C9—Cl1114.98 (15)C21—C20—H20120.3
C8—C9—Cl1117.87 (16)C22—C21—C20120.9 (2)
C4—C10—H10A109.5C22—C21—H21119.6
C4—C10—H10B109.5C20—C21—H21119.6
H10A—C10—H10B109.5C21—C22—C23121.5 (2)
C4—C10—H10C109.5C21—C22—H22119.3
H10A—C10—H10C109.5C23—C22—H22119.3
H10B—C10—H10C109.5C22—C23—C18117.3 (2)
C12—C11—C8125.99 (19)C22—C23—C14124.28 (19)
C12—C11—H11117.0C18—C23—C14118.41 (18)
C8—C11—H11117.0
C9—N1—C1—C2177.8 (2)C11—C12—C13—O1−2.4 (3)
C9—N1—C1—C6−0.4 (3)C11—C12—C13—C14176.4 (2)
N1—C1—C2—C3−178.6 (2)O1—C13—C14—C15−143.8 (2)
C6—C1—C2—C3−0.3 (3)C12—C13—C14—C1537.4 (3)
C1—C2—C3—C4−0.3 (3)O1—C13—C14—C2334.9 (3)
C2—C3—C4—C50.0 (3)C12—C13—C14—C23−143.8 (2)
C2—C3—C4—C10179.7 (2)C23—C14—C15—C16−0.9 (3)
C3—C4—C5—C60.9 (3)C13—C14—C15—C16177.9 (2)
C10—C4—C5—C6−178.8 (2)C14—C15—C16—C170.9 (4)
N1—C1—C6—C7−0.8 (3)C15—C16—C17—C18−0.2 (5)
C2—C1—C6—C7−179.0 (2)C16—C17—C18—C19178.0 (3)
N1—C1—C6—C5179.4 (2)C16—C17—C18—C23−0.5 (5)
C2—C1—C6—C51.2 (3)C17—C18—C19—C20−178.0 (3)
C4—C5—C6—C7178.7 (2)C23—C18—C19—C200.5 (5)
C4—C5—C6—C1−1.5 (3)C18—C19—C20—C210.2 (5)
C1—C6—C7—C81.1 (3)C19—C20—C21—C22−0.5 (5)
C5—C6—C7—C8−179.1 (2)C20—C21—C22—C230.1 (4)
C6—C7—C8—C9−0.3 (3)C21—C22—C23—C180.5 (3)
C6—C7—C8—C11−178.7 (2)C21—C22—C23—C14177.5 (2)
C1—N1—C9—C81.5 (3)C19—C18—C23—C22−0.8 (4)
C1—N1—C9—Cl1−177.48 (16)C17—C18—C23—C22177.7 (3)
C7—C8—C9—N1−1.1 (3)C19—C18—C23—C14−178.0 (3)
C11—C8—C9—N1177.3 (2)C17—C18—C23—C140.5 (4)
C7—C8—C9—Cl1177.80 (17)C15—C14—C23—C22−176.9 (2)
C11—C8—C9—Cl1−3.7 (3)C13—C14—C23—C224.4 (3)
C7—C8—C11—C12−19.2 (4)C15—C14—C23—C180.1 (3)
C9—C8—C11—C12162.5 (2)C13—C14—C23—C18−178.6 (2)
C8—C11—C12—C13−179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1i0.952.863.792 (2)166
C11—H11···Cl10.952.653.045 (2)106
C11—H11···O10.952.452.788 (3)101
C22—H22···O10.952.332.924 (3)120

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2165).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Drexler, M. T. & Amiridis, M. D. (2003). J. Catal.214, 136–145.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Meth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520–530.
  • Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm.48, 252–255. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Oyedapo, A. O., Makanju, V. O., Adewunmi, C. O., Iwalewa, E. O. & Adenowo, T. K. (2004). Afr. J. Trad. CAM.1, 55–62.
  • Prabhavat, M. & Ghiya, B. (1998). Indian J. Heterocycl. Chem.7, 311–312.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Varga, L., Nagy, T., Kövesdi, I., Jordi, B.-B., Dormán, G., Ürge, L. & Darvas, F. (2003). Tetrahedron, 59, 655–662.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography