PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o893.
Published online 2010 March 20. doi:  10.1107/S1600536810010056
PMCID: PMC2983994

Methyl 3-(4-methoxy­phen­yl)-1-methyl-1,2,3,3a,4,11b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

Abstract

In the title compound, C25H25NO4, the pyrrolidine ring exhibits an envelope conformation and the tetra­hydro­pyran ring exhibits a half-chair conformation. The crystal structure is stabilized by inter­molecular C–H(...)π inter­actions.

Related literature

For general background to the applications and biological activity of chromenopyrrole compounds, see: Caine (1993 [triangle]); Carlson (1993 [triangle]); Sokoloff et al. (1990 [triangle]); Wilner (1985 [triangle]); Biava et al. (2005 [triangle]); Fernandes et al. (2004 [triangle]); Borthwick et al. (2000 [triangle]); Jiang et al. (2004 [triangle]). For a related structure, see: Nirmala et al. (2009 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o893-scheme1.jpg

Experimental

Crystal data

  • C25H25NO4
  • M r = 403.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o893-efi1.jpg
  • a = 7.9287 (5) Å
  • b = 10.8707 (6) Å
  • c = 11.6884 (7) Å
  • α = 95.662 (3)°
  • β = 92.332 (4)°
  • γ = 91.797 (4)°
  • V = 1001.05 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.981, T max = 0.985
  • 21741 measured reflections
  • 4776 independent reflections
  • 3836 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.164
  • S = 1.05
  • 4776 reflections
  • 274 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010056/bt5203sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010056/bt5203Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good in vitro activities against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). Against this background, and in order to obtain detailed information on molecular conformation in the solid state, an X-ray study of the title compounds has been carried out.

The geometric parameters of the title molecule (Fig. 1) agree well with those reported for a similar structure (Nirmala et al., 2009). The naphthalene ring system (C1—C10) and the benzene ring (C19—C24) are oriented at an angle of 71.1 (6)° with respect to each other. The pyrrolidine ring makes dihedral angles of 57.7 (7), 60.2 (7) and 64.0 (8)° with the naphthalene ring system and the tetrahydropyran and phenyl rings, respectively.

The pyrrolodine ring adopt an envelope conformation, with the puckering parameters q2 and [var phi] (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli, 1983) as follows: q2=0.4285 (14) Å, [var phi]=222.37 (19)°, Δs(C13)= 3.46 (11) and the tetrahydropyran ring adopt a half-chair conformation, with the puckering parameters q2 and [var phi] (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli, 1983) as follows: q2=0.3644 (14) Å, [var phi]=73.5 (2)°, Δs(C14)= 12.11 (13).

The crystal packing is stabilized by C–H···π (Table. 1) hydrogen bonds

Experimental

A mixture of (2)-methyl-4-(1-formyl naphthalen-2-ylony)-3-(4-methoxy phenyl) but-2-enoate and sarcosine were refluxed in benzene for 20hr and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C25H25NO4Z = 2
Mr = 403.46F(000) = 428
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9287 (5) ÅCell parameters from 4776 reflections
b = 10.8707 (6) Åθ = 1.8–28°
c = 11.6884 (7) ŵ = 0.09 mm1
α = 95.662 (3)°T = 293 K
β = 92.332 (4)°Block, colourless
γ = 91.797 (4)°0.25 × 0.22 × 0.19 mm
V = 1001.05 (10) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4776 independent reflections
Radiation source: fine-focus sealed tube3836 reflections with I > 2σ(I)
graphiteRint = 0.050
ω and [var phi] scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.981, Tmax = 0.985k = −14→14
21741 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.099P)2 + 0.1502P] where P = (Fo2 + 2Fc2)/3
4776 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.28588 (16)0.64583 (12)0.75782 (11)0.0302 (3)
C20.3939 (2)0.54431 (14)0.75627 (13)0.0390 (3)
H20.46050.53360.82160.047*
C30.4023 (2)0.46191 (16)0.66078 (15)0.0517 (4)
H30.47300.39540.66280.062*
C40.3065 (3)0.47564 (17)0.56016 (15)0.0549 (5)
H40.31520.42000.49510.066*
C50.2008 (2)0.57083 (16)0.55850 (14)0.0467 (4)
H50.13660.57970.49170.056*
C60.18576 (18)0.65693 (13)0.65573 (12)0.0356 (3)
C70.0693 (2)0.75203 (15)0.65447 (13)0.0411 (4)
H70.00300.75900.58810.049*
C80.05266 (19)0.83293 (15)0.74783 (13)0.0407 (3)
H8−0.02540.89480.74580.049*
C90.15365 (17)0.82395 (13)0.84889 (12)0.0322 (3)
C100.27031 (16)0.73371 (12)0.85626 (11)0.0281 (3)
C110.36725 (15)0.72609 (11)0.96946 (11)0.0269 (3)
H110.38370.63930.98170.032*
C120.57832 (17)0.81208 (16)1.10401 (12)0.0403 (4)
H12A0.63510.89211.12380.048*
H12B0.65400.74841.12400.048*
C130.41479 (16)0.80366 (13)1.16870 (11)0.0311 (3)
H130.41510.72461.20240.037*
C140.27455 (15)0.79025 (12)1.07047 (11)0.0280 (3)
C150.22197 (17)0.91646 (12)1.03958 (12)0.0331 (3)
H15A0.16090.95651.10230.040*
H15B0.32240.96731.03040.040*
C160.12443 (17)0.71790 (14)1.10765 (12)0.0349 (3)
C170.0270 (3)0.52672 (19)1.1624 (2)0.0776 (7)
H17A0.00290.56271.23810.116*
H17B0.06410.44401.16660.116*
H17C−0.07320.52481.11320.116*
C180.66502 (17)0.73843 (15)0.91570 (13)0.0394 (3)
H18A0.76660.78910.92930.059*
H18B0.63310.73100.83510.059*
H18C0.68420.65780.93960.059*
C190.38660 (16)0.90191 (13)1.26574 (11)0.0304 (3)
C200.43808 (19)1.02529 (14)1.26490 (12)0.0375 (3)
H200.49621.04941.20280.045*
C210.4050 (2)1.11255 (14)1.35383 (13)0.0410 (3)
H210.44181.19431.35160.049*
C220.31722 (18)1.07914 (14)1.44666 (12)0.0367 (3)
C230.26739 (18)0.95725 (15)1.45086 (12)0.0393 (3)
H230.21020.93341.51350.047*
C240.30326 (18)0.87017 (14)1.36077 (12)0.0365 (3)
H240.27010.78791.36450.044*
C250.1930 (2)1.1439 (2)1.62332 (14)0.0566 (5)
H25A0.08391.11001.59580.085*
H25B0.17961.21751.67410.085*
H25C0.25131.08431.66410.085*
N10.53080 (13)0.79497 (11)0.98078 (9)0.0307 (3)
O10.11812 (13)0.90921 (10)0.93631 (9)0.0414 (3)
O2−0.00673 (14)0.76045 (13)1.13242 (13)0.0625 (4)
O30.15812 (16)0.59997 (11)1.11635 (13)0.0602 (4)
O40.28770 (16)1.17310 (11)1.52900 (10)0.0519 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0296 (6)0.0321 (6)0.0298 (6)−0.0027 (5)0.0054 (5)0.0073 (5)
C20.0454 (8)0.0389 (7)0.0336 (7)0.0070 (6)0.0048 (6)0.0056 (6)
C30.0669 (11)0.0452 (9)0.0437 (9)0.0145 (8)0.0089 (8)0.0019 (7)
C40.0749 (12)0.0513 (10)0.0367 (9)0.0022 (9)0.0062 (8)−0.0065 (7)
C50.0546 (10)0.0527 (9)0.0317 (8)−0.0054 (8)−0.0013 (7)0.0024 (6)
C60.0364 (7)0.0404 (7)0.0304 (7)−0.0057 (6)0.0025 (5)0.0073 (6)
C70.0394 (8)0.0520 (9)0.0325 (7)0.0001 (7)−0.0067 (6)0.0113 (6)
C80.0359 (7)0.0474 (8)0.0404 (8)0.0099 (6)−0.0026 (6)0.0120 (6)
C90.0300 (6)0.0353 (7)0.0320 (7)0.0030 (5)0.0010 (5)0.0068 (5)
C100.0252 (6)0.0313 (6)0.0288 (6)0.0005 (5)0.0028 (5)0.0072 (5)
C110.0239 (6)0.0301 (6)0.0279 (6)0.0043 (5)0.0040 (5)0.0070 (5)
C120.0250 (6)0.0628 (10)0.0322 (7)0.0038 (6)0.0005 (5)0.0003 (6)
C130.0277 (6)0.0376 (7)0.0288 (6)0.0042 (5)0.0018 (5)0.0061 (5)
C140.0239 (6)0.0327 (6)0.0280 (6)0.0034 (5)0.0032 (5)0.0034 (5)
C150.0308 (6)0.0344 (7)0.0339 (7)0.0069 (5)−0.0009 (5)0.0008 (5)
C160.0291 (7)0.0443 (8)0.0309 (7)−0.0018 (6)0.0049 (5)0.0012 (6)
C170.0787 (15)0.0543 (11)0.1033 (18)−0.0161 (10)0.0519 (13)0.0120 (11)
C180.0269 (7)0.0548 (9)0.0378 (7)0.0067 (6)0.0085 (6)0.0064 (6)
C190.0251 (6)0.0402 (7)0.0262 (6)0.0019 (5)0.0001 (5)0.0052 (5)
C200.0391 (7)0.0441 (8)0.0302 (7)−0.0039 (6)0.0053 (6)0.0085 (6)
C210.0476 (8)0.0380 (7)0.0371 (8)−0.0034 (6)−0.0010 (6)0.0052 (6)
C220.0341 (7)0.0460 (8)0.0287 (7)0.0051 (6)−0.0044 (5)−0.0010 (6)
C230.0360 (7)0.0540 (9)0.0280 (7)−0.0030 (6)0.0058 (6)0.0050 (6)
C240.0384 (7)0.0408 (7)0.0305 (7)−0.0043 (6)0.0024 (6)0.0066 (6)
C250.0484 (9)0.0837 (13)0.0347 (8)0.0121 (9)0.0016 (7)−0.0109 (8)
N10.0221 (5)0.0412 (6)0.0296 (6)0.0029 (4)0.0037 (4)0.0051 (4)
O10.0434 (6)0.0443 (6)0.0364 (6)0.0202 (5)−0.0060 (4)0.0007 (4)
O20.0303 (6)0.0720 (9)0.0899 (10)0.0074 (5)0.0210 (6)0.0215 (7)
O30.0556 (7)0.0393 (6)0.0896 (10)−0.0023 (5)0.0395 (7)0.0125 (6)
O40.0600 (7)0.0559 (7)0.0375 (6)0.0077 (6)0.0027 (5)−0.0085 (5)

Geometric parameters (Å, °)

C1—C21.4171 (19)C14—C151.5193 (18)
C1—C61.4234 (19)C15—O11.4274 (16)
C1—C101.4331 (18)C15—H15A0.9700
C2—C31.366 (2)C15—H15B0.9700
C2—H20.9300C16—O21.1864 (17)
C3—C41.397 (3)C16—O31.3304 (19)
C3—H30.9300C17—O31.444 (2)
C4—C51.353 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.411 (2)C17—H17C0.9600
C5—H50.9300C18—N11.4503 (16)
C6—C71.408 (2)C18—H18A0.9600
C7—C81.346 (2)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.413 (2)C19—C241.3823 (19)
C8—H80.9300C19—C201.391 (2)
C9—O11.3547 (17)C20—C211.376 (2)
C9—C101.3757 (18)C20—H200.9300
C10—C111.5137 (17)C21—C221.385 (2)
C11—N11.4715 (17)C21—H210.9300
C11—C141.5365 (17)C22—O41.3652 (17)
C11—H110.9800C22—C231.377 (2)
C12—N11.4661 (18)C23—C241.389 (2)
C12—C131.5321 (19)C23—H230.9300
C12—H12A0.9700C24—H240.9300
C12—H12B0.9700C25—O41.415 (2)
C13—C191.5078 (18)C25—H25A0.9600
C13—C141.5584 (18)C25—H25B0.9600
C13—H130.9800C25—H25C0.9600
C14—C161.5083 (19)
C2—C1—C6116.85 (13)C11—C14—C13102.15 (9)
C2—C1—C10123.60 (12)O1—C15—C14112.60 (11)
C6—C1—C10119.53 (12)O1—C15—H15A109.1
C3—C2—C1121.38 (14)C14—C15—H15A109.1
C3—C2—H2119.3O1—C15—H15B109.1
C1—C2—H2119.3C14—C15—H15B109.1
C2—C3—C4121.19 (16)H15A—C15—H15B107.8
C2—C3—H3119.4O2—C16—O3122.75 (14)
C4—C3—H3119.4O2—C16—C14125.01 (14)
C5—C4—C3119.19 (15)O3—C16—C14112.14 (11)
C5—C4—H4120.4O3—C17—H17A109.5
C3—C4—H4120.4O3—C17—H17B109.5
C4—C5—C6121.58 (15)H17A—C17—H17B109.5
C4—C5—H5119.2O3—C17—H17C109.5
C6—C5—H5119.2H17A—C17—H17C109.5
C7—C6—C5120.90 (14)H17B—C17—H17C109.5
C7—C6—C1119.31 (13)N1—C18—H18A109.5
C5—C6—C1119.77 (14)N1—C18—H18B109.5
C8—C7—C6120.99 (13)H18A—C18—H18B109.5
C8—C7—H7119.5N1—C18—H18C109.5
C6—C7—H7119.5H18A—C18—H18C109.5
C7—C8—C9120.09 (13)H18B—C18—H18C109.5
C7—C8—H8120.0C24—C19—C20117.15 (13)
C9—C8—H8120.0C24—C19—C13119.33 (12)
O1—C9—C10124.81 (12)C20—C19—C13123.51 (12)
O1—C9—C8113.03 (12)C21—C20—C19121.51 (13)
C10—C9—C8122.12 (13)C21—C20—H20119.2
C9—C10—C1117.93 (12)C19—C20—H20119.2
C9—C10—C11118.97 (12)C20—C21—C22120.28 (14)
C1—C10—C11122.96 (11)C20—C21—H21119.9
N1—C11—C10114.52 (10)C22—C21—H21119.9
N1—C11—C14101.23 (10)O4—C22—C23124.85 (14)
C10—C11—C14111.22 (10)O4—C22—C21115.66 (14)
N1—C11—H11109.9C23—C22—C21119.49 (13)
C10—C11—H11109.9C22—C23—C24119.42 (13)
C14—C11—H11109.9C22—C23—H23120.3
N1—C12—C13106.97 (11)C24—C23—H23120.3
N1—C12—H12A110.3C19—C24—C23122.11 (14)
C13—C12—H12A110.3C19—C24—H24118.9
N1—C12—H12B110.3C23—C24—H24118.9
C13—C12—H12B110.3O4—C25—H25A109.5
H12A—C12—H12B108.6O4—C25—H25B109.5
C19—C13—C12118.15 (12)H25A—C25—H25B109.5
C19—C13—C14115.05 (10)O4—C25—H25C109.5
C12—C13—C14103.36 (10)H25A—C25—H25C109.5
C19—C13—H13106.5H25B—C25—H25C109.5
C12—C13—H13106.5C18—N1—C12110.87 (11)
C14—C13—H13106.5C18—N1—C11115.47 (11)
C16—C14—C15110.32 (11)C12—N1—C11106.57 (10)
C16—C14—C11114.99 (11)C9—O1—C15118.16 (10)
C15—C14—C11108.79 (10)C16—O3—C17115.85 (14)
C16—C14—C13109.58 (11)C22—O4—C25117.54 (14)
C15—C14—C13110.74 (11)
C6—C1—C2—C30.6 (2)C12—C13—C14—C15−87.13 (13)
C10—C1—C2—C3178.95 (14)C19—C13—C14—C11158.84 (11)
C1—C2—C3—C41.0 (3)C12—C13—C14—C1128.58 (13)
C2—C3—C4—C5−1.5 (3)C16—C14—C15—O1−69.67 (14)
C3—C4—C5—C60.4 (3)C11—C14—C15—O157.34 (14)
C4—C5—C6—C7−176.93 (16)C13—C14—C15—O1168.84 (10)
C4—C5—C6—C11.3 (2)C15—C14—C16—O2−14.5 (2)
C2—C1—C6—C7176.53 (13)C11—C14—C16—O2−137.97 (16)
C10—C1—C6—C7−1.9 (2)C13—C14—C16—O2107.68 (17)
C2—C1—C6—C5−1.7 (2)C15—C14—C16—O3169.18 (12)
C10—C1—C6—C5179.87 (13)C11—C14—C16—O345.69 (16)
C5—C6—C7—C8178.81 (15)C13—C14—C16—O3−68.65 (15)
C1—C6—C7—C80.6 (2)C12—C13—C19—C24−145.25 (14)
C6—C7—C8—C90.5 (2)C14—C13—C19—C2492.10 (15)
C7—C8—C9—O1−177.94 (14)C12—C13—C19—C2035.71 (18)
C7—C8—C9—C10−0.3 (2)C14—C13—C19—C20−86.94 (16)
O1—C9—C10—C1176.35 (12)C24—C19—C20—C21−1.1 (2)
C8—C9—C10—C1−1.0 (2)C13—C19—C20—C21177.95 (13)
O1—C9—C10—C110.5 (2)C19—C20—C21—C22−0.7 (2)
C8—C9—C10—C11−176.85 (12)C20—C21—C22—O4−178.57 (13)
C2—C1—C10—C9−176.25 (13)C20—C21—C22—C231.8 (2)
C6—C1—C10—C92.07 (19)O4—C22—C23—C24179.22 (13)
C2—C1—C10—C11−0.6 (2)C21—C22—C23—C24−1.2 (2)
C6—C1—C10—C11177.76 (11)C20—C19—C24—C231.7 (2)
C9—C10—C11—N1−93.00 (14)C13—C19—C24—C23−177.37 (12)
C1—C10—C11—N191.35 (14)C22—C23—C24—C19−0.6 (2)
C9—C10—C11—C1421.00 (17)C13—C12—N1—C18−150.22 (12)
C1—C10—C11—C14−154.65 (12)C13—C12—N1—C11−23.81 (14)
N1—C12—C13—C19−132.33 (12)C10—C11—N1—C18−74.85 (14)
N1—C12—C13—C14−3.96 (15)C14—C11—N1—C18165.40 (11)
N1—C11—C14—C16−161.46 (11)C10—C11—N1—C12161.56 (11)
C10—C11—C14—C1676.47 (14)C14—C11—N1—C1241.81 (12)
N1—C11—C14—C1574.25 (12)C10—C9—O1—C157.9 (2)
C10—C11—C14—C15−47.82 (14)C8—C9—O1—C15−174.55 (12)
N1—C11—C14—C13−42.87 (12)C14—C15—O1—C9−37.70 (17)
C10—C11—C14—C13−164.94 (10)O2—C16—O3—C17−2.3 (3)
C19—C13—C14—C16−78.79 (14)C14—C16—O3—C17174.09 (16)
C12—C13—C14—C16150.94 (11)C23—C22—O4—C25−2.7 (2)
C19—C13—C14—C1543.13 (15)C21—C22—O4—C25177.75 (14)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C1/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O30.982.482.8514 (18)102
C13—H13···O30.982.532.9610 (18)107
C17—H17B···Cg4i0.972.943.502 (2)119

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5203).

References

  • Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). .Bioorg. Med. Chem.13, 1221–1230. [PubMed]
  • Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem.43, 4452–4464. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caine, B. (1993). Science, 260, 1814–1816. [PubMed]
  • Carlson, J. (1993). Neur. Transm.94, 11–19. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med.37, 1895–1905. [PubMed]
  • Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother.48, 4349–4359. [PMC free article] [PubMed]
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o2028–o2029. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wilner, P. (1985). Clin. Neuropharm.18, suppl1, 549–556.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography