PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o835.
Published online 2010 March 13. doi:  10.1107/S1600536810005441
PMCID: PMC2983992

4-Methyl­anilinium nitrate

Abstract

In the crystal structure of the title compound, C7H10N+·NO3 , N—H(...)O hydrogen bonds involving the ammonium group and the nitrate O atoms result in the formation of zigzag chains propagating in [100].

Related literature

For dielectric-ferroelectric materials, including organic ligands and metal-organic coordination compounds, see: Hang et al. (2009 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o835-scheme1.jpg

Experimental

Crystal data

  • C7H10N+·NO3
  • M r = 170.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o835-efi1.jpg
  • a = 5.6468 (11) Å
  • b = 8.7860 (18) Å
  • c = 17.811 (4) Å
  • β = 99.01 (3)°
  • V = 872.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.60 × 0.40 × 0.40 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.5, T max = 0.5
  • 8641 measured reflections
  • 2011 independent reflections
  • 1432 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.156
  • S = 1.01
  • 2011 reflections
  • 111 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005441/su2140sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005441/su2140Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal–organic coordination compounds (Hang et al., 2009), we have found that 4-methylbenzenaminium nitrate has no dielectric disuniform from 80 K to 445 K, (m.p. 465–468 K). Herein we descibe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a 4-methylbenzenaminium cation and a nitrate anion (Fig. 1).

In the crystal N—H···O hydrogen bonds (Table 1) link the cations and anions to form chains propagating along the a axis (Fig 2).

Experimental

The title compound was obtained by mixing p-toluidine and nitric acid in ethanol, in the stoichiometric ratio 1:1. After a few weeks, colorless crystals were obtained by slow evaporation.

Refinement

The H atoms were included in calculated postions and treated as riding atoms: N—H = 0.89 Å, aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, with Uiso(H) = k × Ueq(parent N- or C-atom), where k = 1.2 for aromatic H atoms, and 1.5 for amonium and methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the crystal packing of the title compound. The N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C7H10N+·NO3F(000) = 360
Mr = 170.17Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3553 reflections
a = 5.6468 (11) Åθ = 3.3–27.6°
b = 8.7860 (18) ŵ = 0.10 mm1
c = 17.811 (4) ÅT = 298 K
β = 99.01 (3)°Prism, colourless
V = 872.8 (3) Å30.60 × 0.40 × 0.40 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer2011 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.5, Tmax = 0.5l = −23→23
8641 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0752P)2 + 0.2152P] where P = (Fo2 + 2Fc2)/3
2011 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.3877 (3)0.91687 (17)0.33271 (9)0.0512 (5)
C10.4679 (3)0.83868 (18)0.40462 (10)0.0434 (5)
C20.6763 (3)0.7554 (2)0.41229 (12)0.0658 (8)
C30.7515 (4)0.6808 (2)0.47979 (14)0.0578 (7)
C40.6214 (4)0.6858 (2)0.53968 (12)0.0607 (7)
C50.4132 (4)0.7703 (2)0.52945 (11)0.0627 (7)
C60.3354 (3)0.8472 (2)0.46280 (11)0.0542 (6)
C70.7061 (5)0.6011 (3)0.61266 (14)0.0920 (10)
O10.9140 (3)0.02956 (19)0.33081 (10)0.0803 (6)
O20.6445 (2)0.17377 (18)0.27222 (9)0.0675 (5)
O30.9986 (3)0.1724 (2)0.24110 (9)0.0737 (6)
N20.8567 (3)0.12615 (18)0.28068 (9)0.0492 (5)
H1A0.495000.987200.325200.0770*
H1B0.246900.961200.334300.0770*
H1C0.372400.849800.294800.0770*
H20.764900.749500.372600.0690*
H30.893600.625500.485400.0790*
H50.322600.775500.568700.0750*
H60.195000.904200.457300.0650*
H7A0.571200.555700.630800.1380*
H7B0.784200.670700.650100.1380*
H7C0.817000.523000.603500.1380*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0498 (9)0.0510 (9)0.0537 (9)−0.0069 (7)0.0109 (7)0.0010 (7)
C10.0431 (9)0.0401 (9)0.0470 (9)−0.0087 (7)0.0073 (7)−0.0034 (7)
C20.0571 (12)0.0555 (12)0.0831 (15)0.0059 (9)0.0053 (11)0.0088 (11)
C30.0526 (11)0.0544 (11)0.0700 (13)0.0012 (9)0.0206 (9)0.0022 (9)
C40.0764 (14)0.0453 (10)0.0553 (11)−0.0150 (10)−0.0054 (10)−0.0008 (8)
C50.0785 (14)0.0653 (13)0.0467 (11)−0.0118 (11)0.0175 (10)−0.0070 (9)
C60.0521 (10)0.0564 (11)0.0555 (11)0.0007 (9)0.0126 (8)−0.0059 (9)
C70.128 (2)0.0688 (15)0.0681 (15)−0.0148 (15)−0.0194 (15)0.0106 (12)
O10.0720 (10)0.0797 (10)0.0930 (12)0.0197 (8)0.0244 (9)0.0394 (9)
O20.0512 (8)0.0811 (10)0.0718 (10)0.0102 (7)0.0143 (7)0.0174 (8)
O30.0618 (9)0.0937 (12)0.0703 (10)−0.0148 (8)0.0253 (7)0.0113 (8)
N20.0489 (8)0.0516 (8)0.0478 (8)−0.0026 (7)0.0098 (6)−0.0004 (7)

Geometric parameters (Å, °)

O1—N21.238 (2)C4—C51.378 (3)
O2—N21.256 (2)C4—C71.509 (3)
O3—N21.217 (2)C5—C61.377 (3)
N1—C11.461 (2)C2—H20.9300
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C5—H50.9300
N1—H1C0.8900C6—H60.9300
C1—C61.372 (3)C7—H7A0.9600
C1—C21.374 (2)C7—H7B0.9600
C2—C31.377 (3)C7—H7C0.9600
C3—C41.387 (3)
H1B—N1—H1C109.00C4—C5—C6121.92 (19)
C1—N1—H1B109.00C1—C6—C5119.10 (17)
C1—N1—H1C109.00C3—C2—H2121.00
C1—N1—H1A109.00C1—C2—H2121.00
H1A—N1—H1C109.00C4—C3—H3119.00
H1A—N1—H1B109.00C2—C3—H3119.00
O1—N2—O2116.86 (17)C4—C5—H5119.00
O2—N2—O3121.45 (17)C6—C5—H5119.00
O1—N2—O3121.70 (18)C1—C6—H6120.00
C2—C1—C6120.92 (17)C5—C6—H6120.00
N1—C1—C6120.37 (16)C4—C7—H7C109.00
N1—C1—C2118.71 (17)H7A—C7—H7C109.00
C1—C2—C3118.85 (19)H7B—C7—H7C109.00
C2—C3—C4121.9 (2)H7A—C7—H7B109.00
C3—C4—C5117.31 (19)C4—C7—H7A109.00
C3—C4—C7120.8 (2)C4—C7—H7B109.00
C5—C4—C7121.9 (2)
N1—C1—C2—C3−179.58 (16)C2—C3—C4—C5−0.7 (3)
C6—C1—C2—C3−0.4 (3)C2—C3—C4—C7179.1 (2)
N1—C1—C6—C5178.92 (16)C3—C4—C5—C60.0 (3)
C2—C1—C6—C5−0.3 (3)C7—C4—C5—C6−179.8 (2)
C1—C2—C3—C40.9 (3)C4—C5—C6—C10.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.383.138 (3)143
N1—H1A···O2i0.892.132.975 (2)158
N1—H1B···O1ii0.891.972.848 (2)171
N1—H1C···O2iii0.891.952.825 (2)169

Symmetry codes: (i) x, y+1, z; (ii) x−1, y+1, z; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2140).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.5, 2026–2029.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography