PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o984.
Published online 2010 March 31. doi:  10.1107/S1600536810009633
PMCID: PMC2983990

1,5-Diamino­tetra­zolium chloride

Abstract

The title compound, CH5N6 +·Cl, crystallized with two indepedent 1,5-diamino­tetra­zolium cations and two independent chloride anions in the asymmetric unit. In the crystal, there are a number of N—H(...)Cl hydrogen-bonding inter­actions, which generate a three-dimensional network.

Related literature

For the preparation of the starting material, 1,5-diamino­tetra­zole, see: Galvez-Ruiz et al. (2005 [triangle]). For the preparation of 5-amino­tetra­zolium halogenide salts, see: Denffer et al. (2008 [triangle]) and of 1,5-diamino­tetra­zolium hydro­chloride, see: He et al. (2009a [triangle]). For the bond distances and angles in a related structure, see: He et al. (2009b [triangle]). For van der Waals radii, see: http://biblo.chm.uri.edu/PeriodicTable/PeriodicTableoftheElements.htm.

An external file that holds a picture, illustration, etc.
Object name is e-66-0o984-scheme1.jpg

Experimental

Crystal data

  • CH5N6 +·Cl
  • M r = 136.56
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o984-efi1.jpg
  • a = 12.389 (3) Å
  • b = 6.4500 (12) Å
  • c = 13.305 (3) Å
  • V = 1063.1 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 93 K
  • 0.43 × 0.27 × 0.10 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008 [triangle]) T min = 0.778, T max = 0.942
  • 7927 measured reflections
  • 1268 independent reflections
  • 1246 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.061
  • S = 1.07
  • 1268 reflections
  • 185 parameters
  • 1 restraint
  • All H-atom parameters refined
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009633/su2159sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009633/su2159Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by the State Key Laboratory of Explosion Science and Technology (QNKT10-09), Beijing Institute of Technology.

supplementary crystallographic information

Comment

The synthesis and study of nitrogen-rich energetic salts and highly energetic materials for possible military as well as civil applications has attracted considerable interest in recent years, especially the salts with tetrazole-containing compounds (Galvez-Ruiz et al., 2005; Denffer et al., 2008). The nitrogen content of 5-amniotetrazole and 1,5-diaminotetrazole, which are primary sources for preparing energetic salts, is 82.3% and 84%, respectively. Denffer et al. (2008) reported the synthesis of 5-aminotetrazolium hydrochloride and determinated its crystal structure. Our rearch group has recently reported on the synthesis of the title compound (He et al.., 2009a,b), and herein we report on its crystal structure.

The molecular structure of the title molecule is presented in Fig. 1. It crystallizes with two independent 1,5-Diaminotetrazolium cations and two independent chloride anions per asymmetric unit. The bond distances and angles are as expected for a molecule of this kind, and are similar to the corresponding distances and angles reported by (He et al., 2009a,b). The cations, excluding the N6 and N11 hydrogen atoms, are planar (maximum deviation 0.020 (2) Å).

The distance between the Cl1 anion and the plane formed by the cation ring 1, (= N1,N2,N3,N4,C1), is 0.445 (1) Å, and the perpendicular distances of this cation centroid, Cg1, to the parallel cation 2 ring planes (= N7,N8,N9,N10,C2), are 2.868 (1) Å (symmetry code: 1-x, -y, 0.5+z) and 2.922 (1) Å (symmetry code: 1-x, 1-y, 0.5+z). The distances of N2—C2 (2.864 (4) Å) and N8—C1i (2.883 (4) Å) [symmetry code (i) = 0.5+x, 0.5-y, z] are smaller than the sum of the associated van der Waals Radii (rN + rC = 3.25 Å), because of edge-to-face π-π interactions between the two cations. Both of the amino groups, in position 4 (N4) and position 5 (N6), form a long contact to the Cl2- anion (N4—Cl2 = 3.017 (2) Å and N6—Cl2ii = 3.146 (2) Å [symmetry code (ii) = x, 1+y, z]), which is within the sum of the van der Waals radii (rN +rCl = 3.30 Å).

In the crystal there are a number of N-H···Cl hydrogen bonds which result in the foamation of a three-dimensional network (Table 1).

Experimental

The starting material, 1,5-diaminotetrazole, was prepared according to the literature method (Galvez-Ruiz et al., 2005). 1,5-diaminotetrazole (2.0043 g, 20.04 mmol) suspended in 40 mL of methanol, was reacted with 10 mL concentrated HCl. The reaction mixture was refluxed for 2 h and then the solvent was evaporated until precipitation occured. The concentrated solution was then placed in the refrigerator, and the white 1,5-diaminotetrazolium hydrochloride was obtained. The precipitate was filtered off and washed with water. The crude product was recrystallized from methanol (Yield: 2.4189 g, 88.6%). Crystals suitable for X-ray structure determination were obtained by slow evaporation of a solution in methanol at rt.

Refinement

In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. All the H-atoms were located in difference Fourier maps and were freely refined: N-H = 0.79 (4) - 0.96 (4) Å.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

CH5N6+·ClF(000) = 560
Mr = 136.56Dx = 1.706 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3581 reflections
a = 12.389 (3) Åθ = 3.1–27.5°
b = 6.4500 (12) ŵ = 0.61 mm1
c = 13.305 (3) ÅT = 93 K
V = 1063.1 (4) Å3Prism, colourless
Z = 80.43 × 0.27 × 0.10 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer1268 independent reflections
Radiation source: Rotating Anode1246 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
Multi–scanh = −16→14
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008)k = −8→8
Tmin = 0.778, Tmax = 0.942l = −16→17
7927 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.061All H-atom parameters refined
S = 1.07w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2133P] where P = (Fo2 + 2Fc2)/3
1268 reflections(Δ/σ)max = 0.004
185 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.44089 (16)0.1470 (3)0.39856 (16)0.0134 (6)
N20.51729 (18)0.2805 (3)0.36265 (19)0.0157 (6)
N30.48306 (18)0.4641 (3)0.37753 (18)0.0191 (7)
N40.38470 (18)0.4512 (3)0.42323 (16)0.0170 (6)
N50.44793 (18)−0.0680 (3)0.39178 (19)0.0174 (6)
N60.26869 (18)0.1788 (3)0.4778 (2)0.0173 (6)
C10.3577 (2)0.2537 (4)0.4364 (2)0.0129 (7)
N70.68577 (16)0.3860 (3)0.20486 (15)0.0128 (6)
N80.76391 (17)0.2503 (3)0.23810 (19)0.0154 (6)
N90.73281 (18)0.0683 (3)0.21667 (17)0.0170 (6)
N100.63448 (17)0.0824 (3)0.17032 (17)0.0153 (6)
N110.68953 (18)0.5995 (3)0.21790 (18)0.0154 (6)
N120.51472 (17)0.3555 (3)0.1248 (2)0.0167 (6)
C20.6038 (2)0.2794 (4)0.1630 (2)0.0131 (7)
Cl10.93591 (4)0.67650 (9)0.13004 (5)0.0168 (2)
Cl20.19017 (4)0.71516 (9)0.47049 (5)0.0174 (2)
H40.342 (3)0.565 (7)0.438 (3)0.048 (12)*
H5A0.446 (3)−0.093 (7)0.334 (3)0.037 (11)*
H5B0.514 (3)−0.104 (5)0.422 (3)0.031 (9)*
H6A0.215 (3)0.259 (6)0.492 (3)0.037 (10)*
H6B0.260 (3)0.037 (6)0.469 (3)0.040 (10)*
H100.599 (3)−0.016 (6)0.158 (3)0.028 (9)*
H11A0.677 (3)0.623 (5)0.288 (3)0.024 (8)*
H11B0.753 (3)0.634 (5)0.200 (2)0.016 (7)*
H12A0.477 (3)0.275 (5)0.094 (3)0.021 (9)*
H12B0.502 (3)0.476 (6)0.129 (3)0.028 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0118 (10)0.0145 (10)0.0140 (10)−0.0003 (8)−0.0009 (8)0.0006 (8)
N20.0157 (11)0.0187 (10)0.0126 (12)−0.0025 (8)0.0014 (9)0.0005 (8)
N30.0194 (11)0.0213 (12)0.0166 (12)−0.0018 (8)−0.0005 (10)−0.0002 (10)
N40.0165 (11)0.0161 (10)0.0184 (11)0.0005 (8)−0.0008 (9)−0.0015 (9)
N50.0182 (11)0.0141 (10)0.0198 (12)0.0029 (8)0.0002 (9)−0.0009 (9)
N60.0132 (9)0.0197 (11)0.0189 (11)0.0007 (8)0.0042 (10)−0.0004 (10)
C10.0118 (12)0.0175 (11)0.0093 (12)0.0023 (9)−0.0028 (9)−0.0006 (9)
N70.0112 (9)0.0146 (10)0.0125 (10)0.0000 (8)−0.0001 (8)0.0008 (8)
N80.0115 (11)0.0202 (10)0.0144 (12)0.0026 (8)0.0003 (9)0.0007 (8)
N90.0170 (11)0.0184 (11)0.0156 (11)0.0014 (8)−0.0002 (9)−0.0001 (9)
N100.0124 (10)0.0164 (10)0.0171 (10)−0.0023 (8)−0.0004 (8)−0.0027 (9)
N110.0126 (10)0.0137 (10)0.0199 (12)−0.0020 (8)0.0008 (9)−0.0013 (9)
N120.0134 (9)0.0170 (11)0.0196 (11)−0.0020 (8)−0.0037 (10)−0.0016 (11)
C20.0134 (12)0.0165 (12)0.0094 (12)−0.0031 (9)0.0028 (10)−0.0010 (9)
Cl10.0114 (3)0.0194 (3)0.0197 (3)−0.0004 (2)−0.0017 (3)0.0002 (3)
Cl20.0126 (3)0.0196 (3)0.0199 (3)−0.0011 (2)0.0019 (3)−0.0003 (3)

Geometric parameters (Å, °)

N1—N21.366 (3)N7—N81.378 (3)
N1—N51.392 (3)N7—N111.389 (3)
N1—C11.338 (3)N7—C21.347 (3)
N2—N31.273 (3)N8—N91.268 (3)
N3—N41.364 (3)N9—N101.368 (3)
N4—C11.329 (3)N10—C21.330 (3)
N6—C11.324 (3)N12—C21.310 (3)
N4—H40.93 (4)N10—H100.79 (4)
N5—H5A0.79 (4)N11—H11A0.96 (4)
N5—H5B0.94 (4)N11—H11B0.85 (4)
N6—H6A0.86 (4)N12—H12A0.81 (4)
N6—H6B0.93 (4)N12—H12B0.80 (4)
N2—N1—N5124.2 (2)N7—N8—N9107.6 (2)
N2—N1—C1109.95 (19)N8—N9—N10108.08 (19)
N5—N1—C1125.8 (2)N9—N10—C2110.6 (2)
N1—N2—N3107.5 (2)C2—N10—H10126 (3)
N2—N3—N4108.06 (19)N9—N10—H10122 (3)
N3—N4—C1110.0 (2)N7—N11—H11B105 (2)
N3—N4—H4124 (2)N7—N11—H11A105.9 (19)
C1—N4—H4126 (3)H11A—N11—H11B112 (3)
N1—N5—H5A105 (3)C2—N12—H12B120 (3)
H5A—N5—H5B113 (4)C2—N12—H12A116 (3)
N1—N5—H5B106 (2)H12A—N12—H12B123 (4)
C1—N6—H6A121 (3)N4—C1—N6127.9 (2)
C1—N6—H6B114 (2)N1—C1—N4104.5 (2)
H6A—N6—H6B122 (3)N1—C1—N6127.6 (2)
N8—N7—N11124.48 (19)N7—C2—N12127.2 (2)
N8—N7—C2109.76 (19)N10—C2—N12128.8 (2)
N11—N7—C2125.7 (2)N7—C2—N10104.0 (2)
N5—N1—N2—N3177.3 (2)N11—N7—N8—N9177.8 (2)
C1—N1—N2—N30.0 (3)C2—N7—N8—N90.9 (3)
N2—N1—C1—N4−0.2 (3)N8—N7—C2—N10−0.9 (3)
N2—N1—C1—N6180.0 (3)N8—N7—C2—N12178.8 (3)
N5—N1—C1—N4−177.4 (2)N11—N7—C2—N10−177.7 (2)
N5—N1—C1—N62.8 (4)N11—N7—C2—N121.9 (4)
N1—N2—N3—N40.1 (3)N7—N8—N9—N10−0.5 (3)
N2—N3—N4—C1−0.2 (3)N8—N9—N10—C2−0.1 (3)
N3—N4—C1—N10.2 (3)N9—N10—C2—N70.6 (3)
N3—N4—C1—N6−179.9 (3)N9—N10—C2—N12−179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.93 (4)2.16 (4)3.017 (2)154 (4)
N5—H5A···Cl1i0.79 (4)2.77 (4)3.555 (3)179 (6)
N5—H5B···Cl2ii0.94 (4)2.39 (4)3.317 (2)170 (3)
N6—H6A···Cl1iii0.86 (4)2.65 (4)3.376 (3)142 (3)
N6—H6B···Cl2iv0.93 (4)2.25 (4)3.146 (2)162 (3)
N10—H10···Cl1i0.79 (4)2.30 (4)3.021 (2)152 (4)
N11—H11A···Cl2v0.96 (4)2.65 (4)3.567 (3)161 (3)
N11—H11B···Cl10.85 (4)2.47 (4)3.306 (2)170 (3)
N12—H12A···Cl2vi0.81 (4)2.67 (4)3.388 (3)148 (3)
N12—H12B···Cl1vii0.80 (4)2.39 (4)3.173 (2)171 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z; (iii) −x+1, −y+1, z+1/2; (iv) x, y−1, z; (v) x+1/2, −y+3/2, z; (vi) −x+1/2, y−1/2, z−1/2; (vii) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2159).

References

  • Denffer, V. M., Klapötke, T. M. & Sabaté, C. M. (2008). Z. Anorg. Allg. Chem.634, 2575–2582.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem.44, 4237–4253. [PubMed]
  • He, C. L., Du, Z. M., Cong, X. M., Tang, Z. Q. & Meng, L. Q. (2009a). Theory and Practice of Energetic Materials, Vol. 8, pp. 673–677. Beijing Institute of Technology.
  • He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1760. [PMC free article] [PubMed]
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography