PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o802.
Published online 2010 March 13. doi:  10.1107/S1600536810008706
PMCID: PMC2983985

2-(4-Chloro­phen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzofuran

Abstract

In the title compound, C21H15ClOS, the 4-chloro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 21.50 (6)°. The dihedral angle between the 5-phenyl ring and the benzofuran plane is 29.39 (6)°. The crystal studied was an inversion twin with a 0.65 (7):0.35 (6) domain ratio.

Related literature

For the crystal structures of similar benzofuran derivatives, see: Choi, et al. (2009 [triangle], 2010 [triangle]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o802-scheme1.jpg

Experimental

Crystal data

  • C21H15ClOS
  • M r = 350.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o802-efi1.jpg
  • a = 10.921 (1) Å
  • b = 7.2225 (8) Å
  • c = 11.740 (1) Å
  • β = 115.132 (6)°
  • V = 838.35 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 173 K
  • 0.27 × 0.15 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.911, T max = 0.951
  • 7754 measured reflections
  • 3571 independent reflections
  • 3376 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.093
  • S = 1.05
  • 3571 reflections
  • 219 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1505 Friedel pairs
  • Flack parameter: 0.35 (6)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008706/fl2295sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008706/fl2295Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Compounds containing a benzofuran moiety show diverse pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), and antimicrobial (Khan et al., 2005) properties. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes as the monoclinic space group P21. The crystal studied was an inversion twin with a 0.65 (7) : 0.35 (6) domain ratio. The benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 21.50 (6)°. The dihedral angle between the 5-phenyl ring and the benzofuran plane is 29.39 (6)°. No unusually close intermolecular interactions were found.

Experimental

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-phenylphenol (340 mg, 2.0 mmol) and 2-chloro-2-methylsulfanyl-4'-chloroacetophenone (470 mg, 2.0 mmol) in dichloromethane (30 ml) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 51%, m.p. 420–421 K; Rf = 0.63 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in carbon tetrachloride at room temperature.

Refinement

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL97-2 (Sheldrick, 2008). All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C21H15ClOSF(000) = 364
Mr = 350.84Dx = 1.390 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4886 reflections
a = 10.921 (1) Åθ = 3.4–27.4°
b = 7.2225 (8) ŵ = 0.36 mm1
c = 11.740 (1) ÅT = 173 K
β = 115.132 (6)°Block, colourless
V = 838.35 (14) Å30.27 × 0.15 × 0.14 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer3571 independent reflections
Radiation source: Rotating Anode3376 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer opticsRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 1.9°
[var phi] and ω scansh = −14→13
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −9→8
Tmin = 0.911, Tmax = 0.951l = −15→15
7754 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.051P)2 + 0.0803P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3571 reflectionsΔρmax = 0.28 e Å3
219 parametersΔρmin = −0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1505 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.35 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl−0.26159 (5)0.53997 (9)−0.01679 (5)0.04418 (14)
S0.45654 (5)0.50246 (9)0.13481 (4)0.04300 (16)
O0.37078 (12)0.5417 (2)0.43085 (10)0.0297 (3)
C10.44798 (18)0.5179 (3)0.28020 (15)0.0289 (4)
C20.56317 (17)0.5235 (3)0.40109 (15)0.0267 (3)
C30.70372 (18)0.5202 (3)0.44147 (15)0.0276 (4)
H30.74120.50780.38220.033*
C40.78803 (17)0.5353 (3)0.56955 (15)0.0270 (3)
C50.72841 (19)0.5488 (3)0.65544 (16)0.0311 (4)
H50.78590.55650.74280.037*
C60.58971 (19)0.5512 (3)0.61716 (16)0.0321 (4)
H60.55130.56070.67590.039*
C70.51007 (18)0.5391 (3)0.48929 (15)0.0287 (3)
C80.33570 (18)0.5302 (3)0.30249 (15)0.0286 (4)
C90.19012 (18)0.5351 (3)0.22349 (15)0.0281 (3)
C100.1017 (2)0.6099 (3)0.26900 (18)0.0297 (4)
H100.13720.65840.35200.036*
C11−0.0366 (2)0.6149 (3)0.19605 (19)0.0329 (4)
H11−0.09550.66720.22810.039*
C12−0.08758 (18)0.5422 (3)0.07541 (16)0.0304 (4)
C13−0.0032 (2)0.4675 (3)0.02688 (17)0.0335 (4)
H13−0.03990.4188−0.05610.040*
C140.1356 (2)0.4641 (3)0.10026 (18)0.0325 (4)
H140.19390.41350.06700.039*
C150.93761 (17)0.5412 (3)0.61447 (15)0.0271 (3)
C161.0017 (2)0.4543 (3)0.54744 (18)0.0316 (4)
H160.94920.38510.47390.038*
C171.1406 (2)0.4677 (3)0.58677 (19)0.0364 (4)
H171.18210.40850.53990.044*
C181.2186 (2)0.5668 (3)0.6939 (2)0.0413 (5)
H181.31340.57810.71980.050*
C191.1582 (2)0.6494 (3)0.7630 (2)0.0416 (5)
H191.21190.71520.83770.050*
C201.0191 (2)0.6369 (3)0.72411 (19)0.0337 (4)
H200.97890.69410.77270.040*
C210.5393 (3)0.7197 (4)0.1356 (2)0.0511 (6)
H21A0.63270.71600.20040.077*
H21B0.49060.82110.15380.077*
H21C0.53940.73980.05310.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0278 (2)0.0580 (3)0.0424 (3)0.0004 (3)0.0107 (2)0.0047 (3)
S0.0401 (3)0.0664 (4)0.0278 (2)−0.0108 (3)0.0195 (2)−0.0125 (2)
O0.0273 (6)0.0387 (7)0.0259 (5)−0.0008 (7)0.0140 (5)−0.0006 (6)
C10.0306 (9)0.0330 (10)0.0255 (7)−0.0046 (8)0.0142 (7)−0.0049 (8)
C20.0298 (8)0.0270 (9)0.0251 (7)−0.0008 (8)0.0133 (7)−0.0007 (8)
C30.0325 (9)0.0265 (9)0.0270 (7)−0.0005 (8)0.0158 (7)0.0003 (8)
C40.0302 (8)0.0237 (8)0.0280 (8)0.0014 (8)0.0132 (7)−0.0003 (8)
C50.0348 (9)0.0347 (9)0.0232 (7)0.0019 (9)0.0116 (7)0.0025 (8)
C60.0352 (9)0.0388 (10)0.0273 (8)0.0014 (9)0.0178 (7)0.0003 (9)
C70.0297 (8)0.0301 (9)0.0289 (8)−0.0003 (9)0.0150 (7)0.0007 (9)
C80.0337 (9)0.0278 (8)0.0253 (7)−0.0021 (9)0.0134 (7)−0.0033 (8)
C90.0307 (8)0.0243 (8)0.0305 (8)−0.0030 (9)0.0143 (7)−0.0003 (8)
C100.0329 (10)0.0291 (9)0.0293 (9)−0.0030 (8)0.0152 (8)−0.0034 (7)
C110.0324 (10)0.0318 (9)0.0402 (10)0.0008 (8)0.0209 (9)−0.0011 (8)
C120.0267 (8)0.0294 (9)0.0321 (8)−0.0011 (9)0.0096 (7)0.0049 (9)
C130.0336 (10)0.0366 (10)0.0272 (8)0.0008 (9)0.0099 (8)−0.0011 (8)
C140.0320 (10)0.0348 (10)0.0321 (9)0.0005 (8)0.0148 (8)−0.0034 (8)
C150.0306 (8)0.0239 (8)0.0264 (7)0.0026 (9)0.0118 (7)0.0045 (8)
C160.0327 (10)0.0310 (10)0.0311 (9)0.0025 (8)0.0135 (8)0.0004 (8)
C170.0357 (11)0.0349 (10)0.0428 (10)0.0080 (9)0.0206 (9)0.0025 (9)
C180.0279 (9)0.0415 (13)0.0511 (12)0.0045 (9)0.0135 (9)0.0003 (10)
C190.0337 (11)0.0396 (12)0.0404 (11)0.0017 (9)0.0050 (9)−0.0066 (9)
C200.0324 (10)0.0334 (10)0.0328 (10)0.0045 (9)0.0113 (8)−0.0030 (8)
C210.0511 (15)0.0618 (15)0.0523 (14)0.0084 (12)0.0334 (13)0.0191 (12)

Geometric parameters (Å, °)

Cl—C121.7425 (18)C10—H100.9500
S—C11.7523 (15)C11—C121.386 (3)
S—C211.809 (3)C11—H110.9500
O—C71.378 (2)C12—C131.382 (3)
O—C81.3907 (18)C13—C141.390 (3)
C1—C81.361 (2)C13—H130.9500
C1—C21.443 (2)C14—H140.9500
C2—C71.390 (2)C15—C201.397 (3)
C2—C31.401 (2)C15—C161.404 (2)
C3—C41.394 (2)C16—C171.388 (3)
C3—H30.9500C16—H160.9500
C4—C51.417 (2)C17—C181.382 (3)
C4—C151.489 (2)C17—H170.9500
C5—C61.385 (3)C18—C191.381 (3)
C5—H50.9500C18—H180.9500
C6—C71.382 (2)C19—C201.391 (3)
C6—H60.9500C19—H190.9500
C8—C91.462 (2)C20—H200.9500
C9—C101.396 (3)C21—H21A0.9800
C9—C141.407 (2)C21—H21B0.9800
C10—C111.384 (3)C21—H21C0.9800
C1—S—C2199.95 (11)C12—C11—H11120.6
C7—O—C8106.06 (12)C13—C12—C11121.37 (17)
C8—C1—C2106.82 (14)C13—C12—Cl118.84 (14)
C8—C1—S128.07 (14)C11—C12—Cl119.78 (14)
C2—C1—S125.10 (13)C12—C13—C14119.59 (17)
C7—C2—C3119.55 (15)C12—C13—H13120.2
C7—C2—C1105.65 (15)C14—C13—H13120.2
C3—C2—C1134.79 (14)C13—C14—C9120.33 (17)
C4—C3—C2119.35 (14)C13—C14—H14119.8
C4—C3—H3120.3C9—C14—H14119.8
C2—C3—H3120.3C20—C15—C16117.61 (17)
C3—C4—C5118.70 (16)C20—C15—C4120.92 (16)
C3—C4—C15120.45 (14)C16—C15—C4121.46 (16)
C5—C4—C15120.84 (15)C17—C16—C15121.11 (18)
C6—C5—C4122.67 (16)C17—C16—H16119.4
C6—C5—H5118.7C15—C16—H16119.4
C4—C5—H5118.7C18—C17—C16120.21 (18)
C7—C6—C5116.66 (15)C18—C17—H17119.9
C7—C6—H6121.7C16—C17—H17119.9
C5—C6—H6121.7C19—C18—C17119.66 (19)
O—C7—C6126.34 (14)C19—C18—H18120.2
O—C7—C2110.60 (14)C17—C18—H18120.2
C6—C7—C2123.06 (16)C18—C19—C20120.46 (19)
C1—C8—O110.86 (15)C18—C19—H19119.8
C1—C8—C9134.88 (15)C20—C19—H19119.8
O—C8—C9114.26 (14)C19—C20—C15120.92 (18)
C10—C9—C14118.36 (17)C19—C20—H20119.5
C10—C9—C8120.64 (15)C15—C20—H20119.5
C14—C9—C8121.00 (16)S—C21—H21A109.5
C11—C10—C9121.59 (16)S—C21—H21B109.5
C11—C10—H10119.2H21A—C21—H21B109.5
C9—C10—H10119.2S—C21—H21C109.5
C10—C11—C12118.75 (17)H21A—C21—H21C109.5
C10—C11—H11120.6H21B—C21—H21C109.5
C21—S—C1—C8114.7 (2)C1—C8—C9—C10−158.1 (2)
C21—S—C1—C2−63.9 (2)O—C8—C9—C1021.4 (3)
C8—C1—C2—C70.1 (2)C1—C8—C9—C1422.2 (4)
S—C1—C2—C7178.95 (16)O—C8—C9—C14−158.26 (19)
C8—C1—C2—C3−178.6 (2)C14—C9—C10—C110.1 (3)
S—C1—C2—C30.3 (4)C8—C9—C10—C11−179.60 (18)
C7—C2—C3—C4−0.9 (3)C9—C10—C11—C120.6 (3)
C1—C2—C3—C4177.6 (2)C10—C11—C12—C13−0.8 (3)
C2—C3—C4—C51.6 (3)C10—C11—C12—Cl178.00 (16)
C2—C3—C4—C15−177.07 (18)C11—C12—C13—C140.3 (3)
C3—C4—C5—C6−1.3 (3)Cl—C12—C13—C14−178.46 (15)
C15—C4—C5—C6177.4 (2)C12—C13—C14—C90.3 (3)
C4—C5—C6—C70.2 (3)C10—C9—C14—C13−0.5 (3)
C8—O—C7—C6178.7 (2)C8—C9—C14—C13179.14 (18)
C8—O—C7—C2−0.9 (2)C3—C4—C15—C20150.24 (19)
C5—C6—C7—O−179.0 (2)C5—C4—C15—C20−28.4 (3)
C5—C6—C7—C20.5 (3)C3—C4—C15—C16−28.6 (3)
C3—C2—C7—O179.40 (17)C5—C4—C15—C16152.8 (2)
C1—C2—C7—O0.5 (2)C20—C15—C16—C17−1.9 (3)
C3—C2—C7—C6−0.2 (3)C4—C15—C16—C17176.97 (18)
C1—C2—C7—C6−179.1 (2)C15—C16—C17—C180.4 (3)
C2—C1—C8—O−0.6 (3)C16—C17—C18—C191.3 (3)
S—C1—C8—O−179.45 (15)C17—C18—C19—C20−1.4 (3)
C2—C1—C8—C9178.9 (2)C18—C19—C20—C15−0.2 (3)
S—C1—C8—C90.1 (4)C16—C15—C20—C191.8 (3)
C7—O—C8—C10.9 (2)C4—C15—C20—C19−177.09 (19)
C7—O—C8—C9−178.73 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2295).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography