PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m387–m388.
Published online 2010 March 10. doi:  10.1107/S1600536810008354
PMCID: PMC2983983

Bis(μ-4-chloro-2-oxidobenzoato)bis­[(1,10-phenanthroline)copper(II)] dihydrate

Abstract

The structure of the the title compound, [Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O, consists of a dimeric unit involving a planar Cu2O2 group arranged around an inversion center. The coordination sphere of the CuII atom can be described as an elongated distorted square pyramid where the basal plane is formed by the two N atoms of the 1,10-phenanthroline mol­ecule and the two O atoms of the hydroxy­chloro­benzoate (hcbe) anion. The long apical Cu—O distance of 2.569 (2) Å involves the O atom of a symmetry-related hcbe anion, building up the dinuclear unit. Each dinuclear unit is connected through O—H(...)O hydrogen bonds involving two water mol­ecules, resulting in an R 4 2(8) graph-set motif and building up an infinite chain parallel to (10An external file that holds a picture, illustration, etc.
Object name is e-66-0m387-efi1.jpg). C—H(...)O inter­actions further stabilize the chain.

Related literature

For our ongoing investigation of the nature of π–π stacking, see: Su & Xu (2004 [triangle]); Xu et al. (2007 [triangle]). For related structures, see: Yang et al. (2006 [triangle]); Garland et al. (1987 [triangle]); Li et al. (1995 [triangle]); Fan & Zhu (2005 [triangle]); Song et al. (2007 [triangle]). For a structural discussion on hydrogen bonding, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m387-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O
  • M r = 864.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m387-efi2.jpg
  • a = 8.1941 (17) Å
  • b = 18.851 (4) Å
  • c = 11.873 (3) Å
  • β = 105.993 (8)°
  • V = 1763.0 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 294 K
  • 0.33 × 0.30 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.656, T max = 0.730
  • 18894 measured reflections
  • 3163 independent reflections
  • 2162 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.103
  • S = 1.03
  • 3163 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008354/dn2542sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008354/dn2542Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title CuII compound incorporating 2-hydroxy-4-chlorobenzoate (hcbe) ligand has recently been prepared in the laboratory and its crystal structure is reported here.

The structure of the the title compound, (C19H11ClCuN2O3).(H2O), consists of a dimeric unit involving a planar Cu2O2 group arranged around inversion center The coordination sphere of the CuII can be described as an elongated distorted square pyramid where the basal plane is formed by the two N atoms of the 1,10-phenanthroline molecule and the two O atoms of the hydroxychlorobenzoate (hcbe) anion. The long apical Cu-O3 distance of 2.569 (2)A involves the O3 atom of the symmetry related hcbe anion [symmetry code (i) i-x,1-y,1-z] building up the dinuclear unit (Fig. 1).

This apical Cu-O3 distance is 0.674 (3) Å longer than Cu—O3 bond distance in the basal coordination plane, showing the Jahn-Teller distorted square-pyramidal coordination geometry around the CuII cation. A patially overlapped arrangement is observed between the nearly parallel C2-C7 phenyl ring and C11-C19 phen ring system [dihedral angle 14.25°]. The centroid to centroid distance is 3.649 (3) Å and the perpendicular distance of the centroid to the rings is 3.456 and 3.571 Å respectively suggesting a weak π-π stacking comparable to that found in the related CuII complexes (Garland et al., 1987; Li et al., 1995; Fan & Zhu, 2005; Song et al., 2007) and also to the NiII complex of 2,4-dihydroxybenzoate (Yang et al., 2006).

Each dinuclear unit are connected through O-H···O hydrogen bonds involving two water molecules resulting in a R24(8) graph set motif ( Etter et al., 1990, Bernstein et al., 1995) and building up an infinite chain parallel to the (1 0 -1) plane. C-H···O interactions further stabilize the chain. (Table 1; Fig. 2).

Experimental

An ethanol-water solution (20 ml, 1:3) containing 2-hydroxy-4-chlorobenzoic acid (0.173 g, 1 mmol), Na2CO3 (0.053 g, 0.5 mmol) and CuCl2.2H2O (0.085 g, 0.5 mmol) was refluxed for 6 h, then phenanthroline hydrate (0.99 g, 1 mmol) was added into the solution and the mixture was refluxed for further 0.5 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after one week.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The dinuclear molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms) [symmetry code: (i) 1-x, 1-y, 1-z].
Fig. 2.
Partial packing view showing the formation of the chain through the O-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed line.[Symmetry codes: (ii) -x, -y+1, ...

Crystal data

[Cu2(C7H3ClO3)2(C12H8N2)2]·2H2OF(000) = 876
Mr = 864.60Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5352 reflections
a = 8.1941 (17) Åθ = 2.2–24.2°
b = 18.851 (4) ŵ = 1.42 mm1
c = 11.873 (3) ÅT = 294 K
β = 105.993 (8)°Prism, blue
V = 1763.0 (6) Å30.33 × 0.30 × 0.22 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer3163 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
graphiteRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 2.1°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −22→22
Tmin = 0.656, Tmax = 0.730l = −13→14
18894 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0509P)2 + 0.5996P] where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.28977 (4)0.501289 (19)0.46012 (3)0.04370 (15)
Cl0.68680 (17)0.80306 (6)0.36270 (13)0.1107 (5)
N10.2931 (3)0.50654 (13)0.6296 (2)0.0456 (6)
N20.1240 (3)0.42264 (13)0.4601 (2)0.0480 (6)
O10.2426 (3)0.49404 (12)0.2962 (2)0.0596 (6)
O20.2234 (3)0.52593 (16)0.1153 (2)0.0750 (7)
O30.4451 (3)0.57734 (11)0.47282 (18)0.0507 (5)
C10.2743 (4)0.5384 (2)0.2219 (3)0.0555 (9)
C20.3717 (4)0.60392 (18)0.2646 (3)0.0512 (8)
C30.4487 (4)0.61966 (16)0.3838 (3)0.0472 (7)
C40.5430 (4)0.68293 (17)0.4110 (3)0.0577 (9)
H40.59500.69410.48890.069*
C50.5593 (5)0.72807 (19)0.3250 (4)0.0718 (11)
C60.4837 (5)0.7141 (2)0.2088 (4)0.0851 (14)
H60.49470.74550.15090.102*
C70.3919 (5)0.6528 (2)0.1802 (3)0.0711 (11)
H70.34080.64310.10150.085*
C80.3797 (4)0.55026 (19)0.7127 (3)0.0569 (9)
H80.44240.58680.69230.068*
C90.3792 (5)0.5429 (2)0.8297 (3)0.0728 (11)
H90.44010.57450.88570.087*
C100.2897 (5)0.4896 (2)0.8616 (4)0.0765 (13)
H100.28920.48470.93940.092*
C110.1979 (5)0.4418 (2)0.7767 (3)0.0635 (10)
C120.1001 (6)0.3835 (3)0.7997 (4)0.0854 (14)
H120.09710.37460.87610.102*
C130.0125 (6)0.3412 (3)0.7126 (5)0.0876 (14)
H13−0.05100.30410.73060.105*
C140.0135 (5)0.3514 (2)0.5930 (4)0.0675 (11)
C15−0.0751 (6)0.3107 (2)0.4968 (5)0.0882 (14)
H15−0.14260.27310.50760.106*
C16−0.0626 (5)0.3259 (2)0.3884 (5)0.0849 (13)
H16−0.12230.29900.32470.102*
C170.0394 (5)0.38181 (19)0.3716 (3)0.0639 (10)
H170.04860.39090.29660.077*
C180.1106 (4)0.40810 (17)0.5688 (3)0.0505 (8)
C190.2019 (4)0.45334 (17)0.6605 (3)0.0499 (8)
O1W0.0002 (4)0.59767 (16)−0.0734 (2)0.0934 (9)
H1A0.06530.5735−0.01240.140*
H1B−0.09410.5733−0.09600.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0459 (2)0.0543 (2)0.0309 (2)−0.00153 (17)0.01078 (16)0.00139 (17)
Cl0.1106 (10)0.0650 (6)0.1553 (13)−0.0153 (6)0.0347 (9)0.0283 (7)
N10.0459 (14)0.0589 (15)0.0335 (14)0.0089 (13)0.0134 (11)−0.0016 (13)
N20.0424 (15)0.0544 (15)0.0472 (17)0.0028 (12)0.0124 (12)−0.0025 (13)
O10.0688 (16)0.0716 (15)0.0349 (13)−0.0104 (12)0.0085 (11)−0.0014 (11)
O20.0772 (18)0.117 (2)0.0277 (14)0.0076 (16)0.0085 (12)0.0011 (13)
O30.0577 (13)0.0586 (13)0.0357 (12)−0.0060 (10)0.0125 (10)0.0031 (10)
C10.0470 (19)0.081 (2)0.038 (2)0.0107 (18)0.0103 (15)0.0060 (18)
C20.0443 (18)0.069 (2)0.0419 (19)0.0106 (16)0.0144 (15)0.0163 (16)
C30.0443 (18)0.0539 (18)0.046 (2)0.0079 (15)0.0176 (15)0.0062 (16)
C40.057 (2)0.0537 (19)0.064 (2)0.0052 (16)0.0197 (18)0.0051 (17)
C50.060 (2)0.058 (2)0.099 (3)0.0067 (18)0.025 (2)0.025 (2)
C60.075 (3)0.095 (3)0.089 (3)0.008 (2)0.028 (3)0.053 (3)
C70.063 (2)0.099 (3)0.052 (2)0.010 (2)0.0164 (19)0.028 (2)
C80.056 (2)0.071 (2)0.042 (2)0.0117 (17)0.0109 (16)−0.0050 (17)
C90.074 (3)0.102 (3)0.038 (2)0.021 (2)0.0075 (19)−0.011 (2)
C100.078 (3)0.119 (4)0.040 (2)0.034 (3)0.028 (2)0.013 (2)
C110.058 (2)0.089 (3)0.052 (2)0.024 (2)0.0296 (18)0.018 (2)
C120.076 (3)0.118 (4)0.078 (3)0.031 (3)0.050 (3)0.045 (3)
C130.074 (3)0.089 (3)0.117 (4)0.009 (2)0.055 (3)0.040 (3)
C140.054 (2)0.064 (2)0.094 (3)0.0047 (18)0.035 (2)0.016 (2)
C150.077 (3)0.062 (2)0.129 (5)−0.013 (2)0.034 (3)0.004 (3)
C160.069 (3)0.069 (3)0.113 (4)−0.014 (2)0.019 (3)−0.024 (3)
C170.057 (2)0.062 (2)0.069 (3)0.0008 (18)0.0128 (19)−0.0129 (19)
C180.0417 (18)0.0575 (19)0.055 (2)0.0093 (15)0.0183 (16)0.0081 (17)
C190.0462 (19)0.062 (2)0.047 (2)0.0175 (16)0.0226 (15)0.0131 (16)
O1W0.097 (2)0.111 (2)0.0617 (18)0.0296 (18)0.0041 (15)0.0005 (16)

Geometric parameters (Å, °)

Cu—O11.882 (2)C8—C91.397 (5)
Cu—O31.895 (2)C8—H80.9300
Cu—O3i2.569 (2)C9—C101.358 (6)
Cu—N12.007 (3)C9—H90.9300
Cu—N22.011 (3)C10—C111.405 (6)
Cl—C51.741 (4)C10—H100.9300
N1—C81.331 (4)C11—C191.406 (4)
N1—C191.360 (4)C11—C121.430 (6)
N2—C171.332 (4)C12—C131.346 (6)
N2—C181.353 (4)C12—H120.9300
O1—C11.292 (4)C13—C141.435 (6)
O2—C11.241 (4)C13—H130.9300
O3—C31.331 (4)C14—C151.401 (6)
C1—C21.482 (5)C14—C181.409 (5)
C2—C71.404 (4)C15—C161.350 (6)
C2—C31.413 (4)C15—H150.9300
C3—C41.409 (5)C16—C171.393 (5)
C4—C51.363 (5)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.374 (6)C18—C191.423 (5)
C6—C71.370 (6)O1W—H1A0.8969
C6—H60.9300O1W—H1B0.8747
C7—H70.9300
O1—Cu—O394.54 (9)C2—C7—H7118.6
O1—Cu—N1169.27 (10)N1—C8—C9121.9 (4)
O3—Cu—N193.42 (10)N1—C8—H8119.1
O1—Cu—N290.01 (10)C9—C8—H8119.1
O3—Cu—N2175.25 (9)C10—C9—C8120.1 (4)
N1—Cu—N281.90 (11)C10—C9—H9120.0
O1—Cu—O3i101.17 (9)C8—C9—H9120.0
O3—Cu—O3i85.40 (9)C9—C10—C11119.8 (4)
N1—Cu—O3i86.62 (8)C9—C10—H10120.1
N2—Cu—O3i95.07 (9)C11—C10—H10120.1
C8—N1—C19118.5 (3)C10—C11—C19116.9 (4)
C8—N1—Cu129.1 (2)C10—C11—C12125.0 (4)
C19—N1—Cu112.2 (2)C19—C11—C12118.1 (4)
C17—N2—C18118.3 (3)C13—C12—C11121.2 (4)
C17—N2—Cu129.1 (3)C13—C12—H12119.4
C18—N2—Cu112.4 (2)C11—C12—H12119.4
C1—O1—Cu129.5 (2)C12—C13—C14122.2 (4)
C3—O3—Cu123.5 (2)C12—C13—H13118.9
O2—C1—O1119.9 (3)C14—C13—H13118.9
O2—C1—C2120.3 (3)C15—C14—C18116.3 (4)
O1—C1—C2119.8 (3)C15—C14—C13126.2 (4)
C7—C2—C3118.0 (3)C18—C14—C13117.5 (4)
C7—C2—C1117.4 (3)C16—C15—C14120.2 (4)
C3—C2—C1124.6 (3)C16—C15—H15119.9
O3—C3—C4117.2 (3)C14—C15—H15119.9
O3—C3—C2124.6 (3)C15—C16—C17120.3 (4)
C4—C3—C2118.2 (3)C15—C16—H16119.9
C5—C4—C3121.2 (4)C17—C16—H16119.9
C5—C4—H4119.4N2—C17—C16121.8 (4)
C3—C4—H4119.4N2—C17—H17119.1
C6—C5—C4121.5 (4)C16—C17—H17119.1
C6—C5—Cl119.1 (3)N2—C18—C14123.2 (3)
C4—C5—Cl119.4 (3)N2—C18—C19116.4 (3)
C5—C6—C7118.5 (3)C14—C18—C19120.4 (3)
C5—C6—H6120.8N1—C19—C11122.8 (3)
C7—C6—H6120.8N1—C19—C18116.6 (3)
C6—C7—C2122.7 (4)C11—C19—C18120.6 (3)
C6—C7—H7118.6H1A—O1W—H1B105.1

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.901.922.817 (4)175
O1W—H1B···O2ii0.882.132.921 (4)150
C10—H10···O2iii0.932.423.277 (5)153
C17—H17···O1Wii0.932.583.487 (4)166

Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2542).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Fan, S.-R. & Zhu, L.-G. (2005). Chin. J. Chem 23, 1292–1296.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Garland, M. T., Grandjean, D. & Spodine, E. (1987). Acta Cryst. C43, 1910–1912.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, M., Zou, J.-Z., Xu, Z., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 639–644.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, J.-F., Chen, Y., Li, Z.-G., Zhou, R.-S., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2007). Polyhedron, 26, 4397–4402
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
  • Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [PubMed]
  • Yang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678–m2680.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography