PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o764.
Published online 2010 March 6. doi:  10.1107/S1600536810007890
PMCID: PMC2983981

(E)-1,2-Bis(1-allyl­benzimidazol-2-yl)ethene

Abstract

In the title compound, C22H20N4, the two benzimidazole ring systems are nearly coplanar [dihedral angle = 4.70 (5)°]. Two terminal C atoms of one allyl group are disordered over two sites of equal occupancy. The crystal structure is stabilized by π–π stacking inter­actions, the centroid–centroid distance between nearly parallel [dihedral angle = 19.82 (4)°] benzene and imidazole rings being 3.7885 (15) Å.

Related literature

For the properties of bis­(imidazole) compounds, see: Knapp et al. (1990 [triangle]); Stibrany (2001 [triangle]); Stibrany et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o764-scheme1.jpg

Experimental

Crystal data

  • C22H20N4
  • M r = 340.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o764-efi1.jpg
  • a = 11.008 (2) Å
  • b = 13.884 (3) Å
  • c = 12.540 (3) Å
  • β = 106.98 (3)°
  • V = 1833.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Rigaku SCXmini diffractometer
  • 18577 measured reflections
  • 4190 independent reflections
  • 2460 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.149
  • S = 1.03
  • 4190 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007890/xu2721sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007890/xu2721Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

supplementary crystallographic information

Comment

Recently, much attention has been devoted to compounds containing bis(imidazoles) due to their interesting properties, such as electron self-exchange (Knapp et al., 1990), catalysts (Stibrany, 2001), and proton sponges (Stibrany et al., 2002). In our laboratory a compound containing bis(imidazoles) has been synthesized, its crystal structure is reported herein.

In the title compound, C22H20N4, the benzimidazole moieties are essentially planar; two allyl groups are not on the planar. The atoms C20 and C21 of terminal olefin show disorder. The crystal structure is stabilized by π-π stacking between benzimidazolium units [the centroid-to-centroid distances between stacking benzene rings and imidazole are 3.7885 (15) Å.

Experimental

Under N2 atmosphere, NaH (60 mmol, 1.44 g) was added to a mixture of (E)-1,2-bis(benzimidazol-2-yl)ethene (10 mmol, 2.6 g ) dimethylformamide (30 ml). After a reaction time of 20 min, the appropriate allyl bromide (20 mmol, 2.4 g) was added dropwise. After an additional 30 min, the product was precipitated with water, collected by filtration and recrystallized to give products in 70% yield. Crystals of title compound (0.3 g) were obtained by slow evaporation of an ethanol/water mixture (1:1 v/v, 10 ml).

Refinement

All H atoms were placed in calculated positions with C—H = 0.93-0.98 Å, and refined with a riding model, Uiso(H) = 1.2Ueq(C). The atoms of C20 and C21 are disordered over two sites with 0.5 occupancy for each component.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level. One disordered component is omitted for clarity.
Fig. 2.
The unit cell packing diagram showing π-π stacking between benzene and imidazole rings. H atoms have been omitted for clarity.

Crystal data

C22H20N4F(000) = 720
Mr = 340.42Dx = 1.233 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2460 reflections
a = 11.008 (2) Åθ = 3.3–27.5°
b = 13.884 (3) ŵ = 0.08 mm1
c = 12.540 (3) ÅT = 293 K
β = 106.98 (3)°Block, yellow
V = 1833.2 (6) Å30.30 × 0.25 × 0.22 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2460 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
graphiteθmax = 27.5°, θmin = 3.3°
Detector resolution: 13.6612 pixels mm-1h = −14→14
ω scansk = −17→17
18577 measured reflectionsl = −16→15
4190 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0589P)2 + 0.2641P] where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max = 0.008
254 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.70227 (17)0.49610 (14)0.68558 (15)0.0475 (5)
C20.7143 (2)0.47856 (16)0.79793 (16)0.0606 (6)
H2A0.69650.41600.82240.073*
C30.7536 (2)0.5530 (2)0.87212 (18)0.0695 (6)
H3A0.76240.54250.94970.083*
C40.7819 (2)0.64336 (18)0.83744 (18)0.0667 (6)
H4A0.80790.69380.89170.080*
C50.77246 (18)0.66223 (16)0.72750 (18)0.0607 (6)
H5A0.79300.72430.70360.073*
C60.73172 (17)0.58701 (14)0.65273 (15)0.0476 (5)
C70.66687 (17)0.48863 (13)0.50843 (15)0.0463 (5)
C80.63061 (18)0.45683 (15)0.39313 (16)0.0512 (5)
H8A0.63250.50300.33660.061*
C90.59503 (17)0.36809 (14)0.36025 (15)0.0497 (5)
H9A0.59260.32080.41540.060*
C100.55903 (17)0.34044 (14)0.24347 (15)0.0455 (4)
C110.48500 (17)0.25237 (14)0.09206 (15)0.0485 (5)
C120.4338 (2)0.18326 (17)0.01055 (19)0.0671 (6)
H12A0.40730.12100.02860.081*
C130.4604 (2)0.3003 (2)−0.12454 (19)0.0736 (7)
H13A0.45320.3147−0.20100.088*
C140.5093 (2)0.36810 (17)−0.04472 (16)0.0617 (6)
H14A0.53310.4308−0.06400.074*
C150.52313 (17)0.34327 (14)0.06632 (15)0.0487 (5)
C160.7238 (2)0.66083 (15)0.46662 (17)0.0606 (6)
H16A0.73230.63510.39810.073*
H16B0.79960.69640.50200.073*
C170.6124 (2)0.72847 (16)0.44099 (16)0.0595 (6)
H17A0.52850.70130.41940.071*
C180.6240 (3)0.82080 (18)0.4455 (2)0.0858 (8)
H18A0.70700.84940.46690.103*
H18B0.54990.86100.42850.103*
C190.4846 (2)0.17117 (16)0.27155 (19)0.0695 (6)
H19A0.41360.13290.22820.083*
H19B0.46610.19380.33830.083*
C200.6135 (9)0.1094 (6)0.3030 (5)0.0653 (18)0.625 (16)
H20A0.68990.13850.34130.078*0.625 (16)
C210.6122 (10)0.0200 (6)0.2758 (5)0.102 (3)0.625 (16)
H21A0.5361−0.00940.23750.122*0.625 (16)
H21B0.6874−0.01510.29450.122*0.625 (16)
C20'0.5505 (16)0.0869 (8)0.2990 (8)0.070 (3)0.375 (16)
H20B0.51140.03320.32420.084*0.375 (16)
C21'0.6665 (16)0.0799 (17)0.2913 (11)0.107 (6)0.375 (16)
H21C0.70400.13230.26720.129*0.375 (16)
H21D0.71130.02250.30990.129*0.375 (16)
C220.4227 (2)0.2096 (2)−0.09844 (19)0.0763 (7)
H22A0.38710.1647−0.15750.092*
N10.70924 (15)0.58089 (11)0.53845 (13)0.0495 (4)
N20.66254 (15)0.43508 (11)0.59442 (13)0.0508 (4)
N30.50861 (14)0.25146 (11)0.20645 (13)0.0492 (4)
N40.56959 (15)0.39678 (12)0.16199 (13)0.0519 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0431 (10)0.0553 (12)0.0437 (11)0.0080 (9)0.0123 (8)−0.0019 (9)
C20.0664 (14)0.0683 (14)0.0493 (13)0.0101 (11)0.0202 (10)0.0043 (11)
C30.0678 (15)0.0964 (18)0.0427 (12)0.0113 (13)0.0139 (11)−0.0080 (13)
C40.0583 (13)0.0808 (17)0.0566 (14)−0.0005 (12)0.0097 (10)−0.0224 (12)
C50.0548 (13)0.0643 (13)0.0594 (14)−0.0063 (11)0.0113 (10)−0.0127 (11)
C60.0397 (10)0.0556 (12)0.0455 (11)0.0020 (9)0.0092 (8)−0.0026 (9)
C70.0444 (10)0.0472 (11)0.0463 (11)0.0044 (9)0.0115 (8)−0.0026 (9)
C80.0558 (12)0.0531 (12)0.0433 (11)0.0033 (9)0.0123 (9)−0.0003 (9)
C90.0508 (11)0.0540 (12)0.0436 (11)0.0039 (9)0.0124 (9)0.0024 (9)
C100.0440 (10)0.0477 (11)0.0443 (11)0.0011 (9)0.0121 (8)−0.0009 (9)
C110.0403 (10)0.0591 (12)0.0456 (11)−0.0010 (9)0.0117 (8)−0.0089 (9)
C120.0574 (13)0.0779 (16)0.0658 (15)−0.0151 (12)0.0176 (11)−0.0201 (12)
C130.0684 (15)0.104 (2)0.0456 (13)0.0098 (14)0.0120 (11)−0.0023 (13)
C140.0674 (14)0.0716 (14)0.0464 (13)0.0084 (11)0.0169 (10)0.0015 (11)
C150.0464 (11)0.0558 (12)0.0446 (11)0.0046 (9)0.0143 (8)−0.0021 (9)
C160.0659 (13)0.0631 (13)0.0562 (13)−0.0127 (11)0.0233 (10)−0.0037 (11)
C170.0653 (13)0.0626 (14)0.0462 (12)−0.0072 (11)0.0095 (10)0.0053 (10)
C180.0754 (17)0.0703 (17)0.103 (2)0.0004 (13)0.0121 (14)0.0072 (15)
C190.0989 (18)0.0522 (13)0.0654 (15)−0.0098 (13)0.0364 (13)−0.0003 (11)
C200.077 (5)0.063 (4)0.061 (3)−0.016 (3)0.028 (3)0.015 (2)
C210.116 (6)0.075 (5)0.112 (4)0.016 (4)0.031 (4)−0.003 (3)
C20'0.080 (8)0.054 (6)0.083 (5)−0.005 (5)0.037 (5)0.015 (4)
C21'0.095 (10)0.144 (17)0.097 (7)0.021 (9)0.053 (7)0.004 (9)
C220.0629 (15)0.105 (2)0.0547 (15)−0.0058 (14)0.0068 (11)−0.0297 (14)
N10.0527 (9)0.0499 (9)0.0451 (10)−0.0033 (8)0.0127 (7)−0.0031 (8)
N20.0559 (10)0.0492 (9)0.0473 (10)0.0033 (8)0.0149 (8)−0.0004 (8)
N30.0505 (9)0.0498 (9)0.0485 (10)−0.0029 (8)0.0163 (7)−0.0027 (7)
N40.0586 (10)0.0524 (10)0.0451 (10)−0.0021 (8)0.0155 (8)−0.0013 (8)

Geometric parameters (Å, °)

C1—N21.387 (2)C13—C221.395 (3)
C1—C61.395 (3)C13—H13A0.9600
C1—C21.398 (3)C14—C151.399 (3)
C2—C31.373 (3)C14—H14A0.9599
C2—H2A0.9600C15—N41.377 (2)
C3—C41.392 (3)C16—N11.467 (2)
C3—H3A0.9601C16—C171.503 (3)
C4—C51.377 (3)C16—H16A0.9599
C4—H4A0.9601C16—H16B0.9600
C5—C61.388 (3)C17—C181.288 (3)
C5—H5A0.9600C17—H17A0.9601
C6—N11.384 (2)C18—H18A0.9598
C7—N21.322 (2)C18—H18B0.9600
C7—N11.378 (2)C19—C20'1.367 (10)
C7—C81.452 (3)C19—N31.451 (2)
C8—C91.322 (3)C19—C201.605 (8)
C8—H8A0.9601C19—H19A0.9700
C9—C101.453 (3)C19—H19B0.9700
C9—H9A0.9598C20—C211.286 (14)
C10—N41.319 (2)C20—H20A0.9300
C10—N31.378 (2)C21—H21A0.9300
C11—N31.381 (2)C21—H21B0.9300
C11—C121.395 (3)C20'—C21'1.31 (3)
C11—C151.397 (3)C20'—H20B0.9601
C12—C221.385 (3)C21'—H21C0.9300
C12—H12A0.9600C21'—H21D0.9300
C13—C141.365 (3)C22—H22A0.9602
N2—C1—C6110.73 (16)C17—C16—H16A109.1
N2—C1—C2129.69 (19)N1—C16—H16B109.9
C6—C1—C2119.58 (19)C17—C16—H16B108.8
C3—C2—C1118.0 (2)H16A—C16—H16B107.9
C3—C2—H2A121.1C18—C17—C16123.2 (2)
C1—C2—H2A120.8C18—C17—H17A118.6
C2—C3—C4121.4 (2)C16—C17—H17A118.2
C2—C3—H3A119.3C17—C18—H18A119.9
C4—C3—H3A119.2C17—C18—H18B120.1
C5—C4—C3121.7 (2)H18A—C18—H18B120.0
C5—C4—H4A119.4C20'—C19—N3129.0 (7)
C3—C4—H4A118.9C20'—C19—C2027.7 (5)
C4—C5—C6116.6 (2)N3—C19—C20104.8 (3)
C4—C5—H5A121.8C20'—C19—H19A87.3
C6—C5—H5A121.6N3—C19—H19A110.8
N1—C6—C5132.12 (19)C20—C19—H19A110.8
N1—C6—C1105.28 (16)C20'—C19—H19B106.9
C5—C6—C1122.59 (19)N3—C19—H19B110.8
N2—C7—N1112.96 (16)C20—C19—H19B110.8
N2—C7—C8125.19 (18)H19A—C19—H19B108.9
N1—C7—C8121.85 (17)C21—C20—C19120.7 (10)
C9—C8—C7124.36 (19)C21—C20—H20A119.7
C9—C8—H8A117.4C19—C20—H20A119.7
C7—C8—H8A118.2C20—C21—H21A120.0
C8—C9—C10121.97 (18)C20—C21—H21B120.0
C8—C9—H9A118.8H21A—C21—H21B120.0
C10—C9—H9A119.3C20—C21—H20B73.3
N4—C10—N3112.87 (16)H21A—C21—H20B65.1
N4—C10—C9124.38 (17)H21B—C21—H20B135.0
N3—C10—C9122.75 (17)C21'—C20'—C19120.1 (19)
N3—C11—C12131.9 (2)C21'—C20'—H20B120.5
N3—C11—C15105.67 (16)C19—C20'—H20B119.5
C12—C11—C15122.43 (19)C20'—C21'—H21C120.0
C22—C12—C11116.2 (2)C20'—C21'—H21D120.0
C22—C12—H12A121.7H21C—C21'—H21D120.0
C11—C12—H12A122.1C12—C22—C13121.5 (2)
C14—C13—C22122.1 (2)C12—C22—H22A119.3
C14—C13—H13A119.2C13—C22—H22A119.2
C22—C13—H13A118.7C7—N1—C6106.49 (15)
C13—C14—C15117.7 (2)C7—N1—C16128.65 (16)
C13—C14—H14A121.3C6—N1—C16124.80 (15)
C15—C14—H14A121.0C7—N2—C1104.53 (16)
N4—C15—C11110.26 (16)C10—N3—C11106.07 (15)
N4—C15—C14129.74 (19)C10—N3—C19128.38 (17)
C11—C15—C14119.99 (18)C11—N3—C19125.55 (17)
N1—C16—C17112.04 (17)C10—N4—C15105.12 (16)
N1—C16—H16A108.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2721).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc.112, 3452–3464.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stibrany, R. T. (2001). US Patent No. 6 180 788.
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography