PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o968.
Published online 2010 March 27. doi:  10.1107/S1600536810011025
PMCID: PMC2983979

3-Benzoyl-4-hydr­oxy-2-methyl-2H-1,2-benzothia­zine 1,1-dioxide

Abstract

In the title mol­ecule, C16H13NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.410 (3) and 0.299 (3) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The crystal structure is stabilized by inter­molecular hydrogen bonds of the types O—H(...)O and C—H(...)O; the former result in dimers lying about inversion centers and the latter form chains of mol­ecules running along the c axis. In addition, intra­molecular O—H(...)O links are present.

Related literature

For 1,2-benzothia­zine derivatives as anti-inflammatory drugs (NSAIDs), see: Lombardino et al. (1971 [triangle]); Soler (1985 [triangle]); Carty et al. (1993 [triangle]); Turck et al. (1995 [triangle]). For the synthesis of benzothia­zine derivatives, see: Siddiqui et al. (2007 [triangle]); Ahmad, Siddiqui, Zia-ur-Rehman et al. (2010 [triangle]). For related structures, see: Siddiqui et al. (2008 [triangle]); Ahmad, Siddiqui, Rizvi et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o968-scheme1.jpg

Experimental

Crystal data

  • C16H13NO4S
  • M r = 315.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o968-efi1.jpg
  • a = 6.8342 (3) Å
  • b = 9.9085 (3) Å
  • c = 10.7234 (4) Å
  • α = 83.257 (2)°
  • β = 79.481 (2)°
  • γ = 85.113 (2)°
  • V = 707.50 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 173 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.971, T max = 0.981
  • 7177 measured reflections
  • 4080 independent reflections
  • 3665 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.113
  • S = 1.09
  • 4080 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011025/jh2140sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011025/jh2140Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to Institute of Chemistry, University of the Punjab, for financial support.

supplementary crystallographic information

Comment

Oxicam, a class of non steroidal anti-inflammatory drugs (NSAIDs) consists of benzothiazine derivatives which are found to be potent anti-inflammatory and analgesic agents, e.g., piroxicam (Lombardino et al., 1971), droxicam (Soler, 1985), ampiroxicam (Carty et al., 1993), meloxicam (Turck et al., 1995), etc. In continuation of our research on potential biologically active benzothiazine compounds (Siddiqui et al., 2007; Ahmad, Siddiqui, Zia-ur-Rehman et al., 2010), we report the synthesis and crystal structure of the title compound in this article.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; Ahmad, Siddiqui, Rizvi et al., 2010). The heterocyclic thiazine ring adopts half chair conformation with atoms S1 and N1 displaced by 0.410 (3) and 0.299 (3) Å on the opposite sides from the mean planes formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types O—H···O and C—H···O; the former result in dimers lying about inversion centers and the later form chains of molecules running along the c-axis (Tab. 1 and Fig. 2). In addition, intramolecular interactions of the types O—H···O and C—H···N are also present consolidating the crystal packing.

Experimental

An aqueous sodium hydroxide solution (1.33 g in 10 ml water) was slowly added to a solution of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (5.0 g, 16.6 mmole) in acetone (50 ml). Dimethylsulfate (4.03 g, 32 mmole) was added drop wise and the mixture was stirred for 30 minutes. The contents of the flask were acidified to pH 3.0 by the addition of 5% HCl. White precipitates of the title compound were formed which were collected and washed with excess distilled water. Crystals suitable for crystallographic study were grown from a solution of chloroform/methanol (4:1); yield = 3.5 g, 70%; m.p. = 420-421 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with O—H = 0.84 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(O/C). The final difference map was essentially featurless.

Figures

Fig. 1.
The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
Fig. 2.
A part of the unit cell showing intermolecular and intrmolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C16H13NO4SZ = 2
Mr = 315.33F(000) = 328
Triclinic, P1Dx = 1.480 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8342 (3) ÅCell parameters from 3532 reflections
b = 9.9085 (3) Åθ = 1.0–30.0°
c = 10.7234 (4) ŵ = 0.25 mm1
α = 83.257 (2)°T = 173 K
β = 79.481 (2)°Block, pale-yellow
γ = 85.113 (2)°0.12 × 0.10 × 0.08 mm
V = 707.50 (5) Å3

Data collection

Nonius KappaCCD diffractometer4080 independent reflections
Radiation source: fine-focus sealed tube3665 reflections with I > 2σ(I)
graphiteRint = 0.022
ω and [var phi] scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −9→9
Tmin = 0.971, Tmax = 0.981k = −13→13
7177 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3608P] where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.20282 (5)0.24470 (3)0.28051 (3)0.02305 (10)
O1−0.00548 (16)0.28521 (10)0.28975 (11)0.0279 (2)
O20.29460 (19)0.15793 (11)0.18540 (11)0.0339 (3)
O30.23671 (18)0.47875 (11)0.58638 (10)0.0290 (2)
H3O0.23330.56210.56040.044*
O40.24683 (18)0.68733 (10)0.42430 (10)0.0303 (2)
N10.32262 (17)0.38365 (11)0.25903 (11)0.0218 (2)
C10.2435 (2)0.17087 (13)0.43178 (14)0.0230 (3)
C20.2400 (2)0.03080 (14)0.46264 (16)0.0284 (3)
H20.2244−0.02680.40080.034*
C30.2596 (2)−0.02341 (15)0.58521 (17)0.0321 (3)
H30.2570−0.11890.60780.039*
C40.2832 (2)0.06112 (16)0.67508 (16)0.0325 (3)
H40.29650.02290.75880.039*
C50.2875 (2)0.20118 (15)0.64393 (14)0.0279 (3)
H50.30350.25820.70620.033*
C60.2683 (2)0.25797 (13)0.52084 (13)0.0228 (3)
C70.2650 (2)0.40639 (13)0.48734 (13)0.0218 (2)
C80.2777 (2)0.46608 (13)0.36361 (13)0.0205 (2)
C90.2466 (2)0.61275 (13)0.33796 (13)0.0222 (2)
C100.5305 (2)0.38032 (17)0.19048 (16)0.0336 (3)
H10A0.56880.47360.16240.040*
H10B0.54190.32960.11610.040*
H10C0.61890.33560.24740.040*
C110.2056 (2)0.67762 (13)0.21160 (13)0.0227 (3)
C120.0803 (2)0.61998 (14)0.14609 (14)0.0254 (3)
H120.03300.53250.17580.030*
C130.0252 (2)0.69159 (15)0.03694 (14)0.0283 (3)
H13−0.06190.6535−0.00710.034*
C140.0968 (3)0.81858 (15)−0.00811 (15)0.0304 (3)
H140.05870.8668−0.08280.036*
C150.2239 (3)0.87500 (15)0.05592 (15)0.0309 (3)
H150.27520.96090.02400.037*
C160.2759 (2)0.80577 (14)0.16662 (14)0.0270 (3)
H160.35950.84560.21190.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02533 (17)0.02010 (16)0.02556 (17)−0.00128 (11)−0.00723 (12)−0.00570 (11)
O10.0246 (5)0.0277 (5)0.0338 (6)−0.0033 (4)−0.0113 (4)−0.0022 (4)
O20.0448 (7)0.0258 (5)0.0331 (6)0.0001 (4)−0.0074 (5)−0.0127 (4)
O30.0404 (6)0.0251 (5)0.0231 (5)0.0006 (4)−0.0084 (4)−0.0063 (4)
O40.0444 (6)0.0224 (5)0.0263 (5)−0.0038 (4)−0.0088 (4)−0.0065 (4)
N10.0218 (5)0.0210 (5)0.0224 (5)−0.0014 (4)−0.0020 (4)−0.0053 (4)
C10.0189 (6)0.0221 (6)0.0281 (7)−0.0007 (4)−0.0050 (5)−0.0017 (5)
C20.0218 (6)0.0220 (6)0.0412 (8)−0.0019 (5)−0.0061 (6)−0.0017 (5)
C30.0234 (7)0.0245 (6)0.0460 (9)−0.0031 (5)−0.0055 (6)0.0068 (6)
C40.0278 (7)0.0326 (7)0.0337 (8)−0.0019 (6)−0.0045 (6)0.0093 (6)
C50.0261 (7)0.0311 (7)0.0256 (7)−0.0004 (5)−0.0053 (5)0.0012 (5)
C60.0194 (6)0.0230 (6)0.0254 (6)−0.0004 (4)−0.0040 (5)−0.0010 (5)
C70.0212 (6)0.0226 (6)0.0226 (6)−0.0010 (4)−0.0054 (5)−0.0038 (5)
C80.0209 (6)0.0202 (5)0.0211 (6)−0.0011 (4)−0.0041 (4)−0.0042 (4)
C90.0227 (6)0.0211 (6)0.0234 (6)−0.0033 (4)−0.0039 (5)−0.0032 (4)
C100.0259 (7)0.0364 (8)0.0373 (8)−0.0034 (6)0.0036 (6)−0.0123 (6)
C110.0255 (6)0.0200 (6)0.0222 (6)0.0002 (5)−0.0033 (5)−0.0033 (4)
C120.0278 (7)0.0232 (6)0.0258 (6)−0.0021 (5)−0.0054 (5)−0.0036 (5)
C130.0319 (7)0.0287 (7)0.0261 (7)−0.0005 (5)−0.0093 (6)−0.0046 (5)
C140.0391 (8)0.0266 (7)0.0249 (7)0.0036 (6)−0.0077 (6)−0.0012 (5)
C150.0404 (8)0.0216 (6)0.0301 (7)−0.0031 (5)−0.0058 (6)0.0005 (5)
C160.0312 (7)0.0217 (6)0.0294 (7)−0.0034 (5)−0.0070 (6)−0.0036 (5)

Geometric parameters (Å, °)

S1—O21.4329 (11)C6—C71.4716 (18)
S1—O11.4346 (11)C7—C81.3784 (19)
S1—N11.6333 (12)C8—C91.4518 (18)
S1—C11.7593 (14)C9—C111.4936 (19)
O3—C71.3265 (16)C10—H10A0.9800
O3—H3O0.8400C10—H10B0.9800
O4—C91.2509 (16)C10—H10C0.9800
N1—C81.4373 (16)C11—C121.3966 (19)
N1—C101.4753 (18)C11—C161.3969 (19)
C1—C21.3896 (19)C12—C131.391 (2)
C1—C61.4011 (19)C12—H120.9500
C2—C31.386 (2)C13—C141.390 (2)
C2—H20.9500C13—H130.9500
C3—C41.388 (2)C14—C151.389 (2)
C3—H30.9500C14—H140.9500
C4—C51.390 (2)C15—C161.388 (2)
C4—H40.9500C15—H150.9500
C5—C61.3974 (19)C16—H160.9500
C5—H50.9500
O2—S1—O1118.95 (7)C7—C8—N1120.26 (11)
O2—S1—N1108.49 (7)C7—C8—C9120.23 (12)
O1—S1—N1107.25 (6)N1—C8—C9119.51 (12)
O2—S1—C1109.77 (7)O4—C9—C8119.85 (12)
O1—S1—C1107.98 (6)O4—C9—C11118.55 (12)
N1—S1—C1103.26 (6)C8—C9—C11121.55 (12)
C7—O3—H3O109.5N1—C10—H10A109.5
C8—N1—C10116.02 (11)N1—C10—H10B109.5
C8—N1—S1114.56 (9)H10A—C10—H10B109.5
C10—N1—S1118.88 (9)N1—C10—H10C109.5
C2—C1—C6121.72 (13)H10A—C10—H10C109.5
C2—C1—S1120.23 (11)H10B—C10—H10C109.5
C6—C1—S1117.96 (10)C12—C11—C16119.90 (13)
C3—C2—C1118.87 (14)C12—C11—C9121.08 (12)
C3—C2—H2120.6C16—C11—C9118.60 (12)
C1—C2—H2120.6C13—C12—C11119.51 (13)
C2—C3—C4120.34 (14)C13—C12—H12120.2
C2—C3—H3119.8C11—C12—H12120.2
C4—C3—H3119.8C14—C13—C12120.42 (14)
C3—C4—C5120.73 (15)C14—C13—H13119.8
C3—C4—H4119.6C12—C13—H13119.8
C5—C4—H4119.6C15—C14—C13120.07 (14)
C4—C5—C6119.87 (15)C15—C14—H14120.0
C4—C5—H5120.1C13—C14—H14120.0
C6—C5—H5120.1C16—C15—C14119.93 (14)
C5—C6—C1118.46 (13)C16—C15—H15120.0
C5—C6—C7120.69 (13)C14—C15—H15120.0
C1—C6—C7120.79 (12)C15—C16—C11120.14 (14)
O3—C7—C8122.43 (12)C15—C16—H16119.9
O3—C7—C6114.62 (12)C11—C16—H16119.9
C8—C7—C6122.84 (12)
O2—S1—N1—C8−166.36 (9)C1—C6—C7—C8−13.2 (2)
O1—S1—N1—C863.98 (11)O3—C7—C8—N1175.55 (12)
C1—S1—N1—C8−49.92 (11)C6—C7—C8—N1−8.6 (2)
O2—S1—N1—C10−22.94 (13)O3—C7—C8—C9−4.2 (2)
O1—S1—N1—C10−152.60 (11)C6—C7—C8—C9171.61 (12)
C1—S1—N1—C1093.50 (12)C10—N1—C8—C7−100.95 (16)
O2—S1—C1—C2−37.60 (14)S1—N1—C8—C743.55 (16)
O1—S1—C1—C293.50 (12)C10—N1—C8—C978.84 (16)
N1—S1—C1—C2−153.13 (11)S1—N1—C8—C9−136.66 (11)
O2—S1—C1—C6145.77 (11)C7—C8—C9—O413.9 (2)
O1—S1—C1—C6−83.13 (12)N1—C8—C9—O4−165.87 (13)
N1—S1—C1—C630.25 (12)C7—C8—C9—C11−163.55 (13)
C6—C1—C2—C30.6 (2)N1—C8—C9—C1116.66 (19)
S1—C1—C2—C3−175.86 (11)O4—C9—C11—C12−137.23 (14)
C1—C2—C3—C4−0.3 (2)C8—C9—C11—C1240.27 (19)
C2—C3—C4—C50.0 (2)O4—C9—C11—C1635.29 (19)
C3—C4—C5—C6−0.1 (2)C8—C9—C11—C16−147.21 (14)
C4—C5—C6—C10.4 (2)C16—C11—C12—C13−0.6 (2)
C4—C5—C6—C7177.71 (13)C9—C11—C12—C13171.87 (13)
C2—C1—C6—C5−0.7 (2)C11—C12—C13—C141.1 (2)
S1—C1—C6—C5175.85 (10)C12—C13—C14—C15−0.1 (2)
C2—C1—C6—C7−178.00 (13)C13—C14—C15—C16−1.4 (2)
S1—C1—C6—C7−1.42 (18)C14—C15—C16—C112.0 (2)
C5—C6—C7—O3−14.30 (19)C12—C11—C16—C15−1.0 (2)
C1—C6—C7—O3162.91 (13)C9—C11—C16—C15−173.59 (13)
C5—C6—C7—C8169.55 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.802.5365 (15)146
O3—H3O···O1i0.842.563.0108 (15)115
C3—H3···O1ii0.952.503.2627 (18)138
C12—H12···N10.952.593.0163 (18)107

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2140).

References

  • Ahmad, M., Siddiqui, H. L., Rizvi, U. F., Ahmad, S. & Parvez, M. (2010). Acta Cryst. E66, o862. [PMC free article] [PubMed]
  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissman, A. (1993). Agents Actions, 39, 157–165. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem.14, 1171–1177. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun.37, 767–773.
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]
  • Soler, J. E. (1985). US Patent No. 4 563 452.
  • Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest.9, 270–276.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography