PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m378–m379.
Published online 2010 March 6. doi:  10.1107/S1600536810008135
PMCID: PMC2983974

Bis(μ-1,2-bis­{[2-(2-pyrid­yl)-1H-imidazol-1-yl]meth­yl}benzene)bis­[bis­(thio­cyanato-κN)cadmium(II)]

Abstract

The asymmetric unit of the binuclear title compound, [Cd2(NCS)4(C24H20N6)2], contains one half-mol­ecule, consisting of one Cd2+ cation, two half 1,2-bis­{[2-(2-pyrid­yl)-1H-imidazol-1-yl]meth­yl}benzene (L) ligands and two SCN anions. The dimeric cyclic mol­ecule is completed by crystallographic inversion symmetry. The Cd2+ cation is coordinated by two N atoms from two SCN anions and four N atoms from two symmetry-related L ligands, exhibiting a distorted octrahedral coordination. A two-dimensional supra­molecular network stacked parallel to [210] is finally formed by linking these dimers through weak π–π stacking inter­actions between the pyridine rings and benzene rings of adjacent dimers, with a plane-to-plane distance of 3.36 (6) Å and a centroid–centroid distance of 3.67 (2) Å. One of the thio­cyanate S atoms is equally disordered over two positions.

Related literature

For general background to the luminescent properties of cadmium compounds, see: Yam & Lo (1999 [triangle]); Zheng et al. (2004 [triangle]). For related structures, see: Dai et al. (2002 [triangle]); Luan et al. (2006 [triangle]); Wang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m378-scheme1.jpg

Experimental

Crystal data

  • [Cd2(NCS)4(C24H20N6)2]
  • M r = 1242.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m378-efi1.jpg
  • a = 10.1170 (5) Å
  • b = 24.0740 (12) Å
  • c = 10.723 (1) Å
  • β = 97.678 (1)°
  • V = 2588.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 293 K
  • 0.33 × 0.31 × 0.28 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.717, T max = 0.748
  • 15880 measured reflections
  • 6112 independent reflections
  • 2967 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.079
  • S = 0.96
  • 6112 reflections
  • 333 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008135/wm2310sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008135/wm2310Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Interest in cadmium compounds was provoked by their luminescent properties (Yam & Lo, 1999; Zheng et al., 2004). A number of cadmium compounds have been reported with different N-donor ligands. In this paper, we present the hydrothermal synthesis and crystal structure of the title compound, (I), [Cd2(C24H20N6)2(SCN)4], based on the 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene ligand (hereafter L).

The asymmetric unit of (I) contains one Cd2+ cation, two halfs of the L ligand and two SCN- anions. Two complete L ligands link two Cd2+ cations to form a centrosymmetric dimeric ring. So the asymmetric unit contains only half of the ring molecule (Fig. 1). The Cd2+ cation is coordinated to the N atom of two SCN- anions and four N atoms from symmetry-related L ligands within normal Cd—N distances (Dai et al., 2002; Luan et al., 2006; Wang et al., 2003). The resulting CdN6 polyhedron can be considered as a distorted octahedron. Each dimer links adjacent dimers viaπ–π interactions between pyridine rings and benzene rings to form a 2D supramolecular network stacked along [210] (Fig. 2), with a plane to plane distance of 3.36 (6) Å and a centroid-centroid distance of 3.67 (2) Å.

Experimental

A mixture of Cd(OAc)2.2H2O (0.13 g, 0.50 mmol), L (0.2 g, 0.5 mmol), KSCN (0.10 g, 1 mmol) and H2O (10 ml) was stirred for 1 h, and then transferred and sealed in a 25 ml Teflon-lined stainless steel container. The container was heated to 423 K, held at that temperature for 72 h, and cooled to room temperature at a rate of 10 Kh-1. Colourless parallelepipeds of (I) were collected in 78% yield.

Refinement

One of the SCN- groups is disordered over two positions. The S atom was refined with a 0.5:0.5 occupancy ratio. All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å for aromatic C atoms, and with C—H = 0.97 Å for aliphatic C atoms, and Uiso=1.2 or 1.5Ueq(C).

Figures

Fig. 1.
A displacement ellipsoids view of (I), drawn at 30% probability level, showing two cations and one anion. All non-labelled atoms are generated by symmetry operator: 2-x, y, 1-z. H atoms were omitted for clarity. The two orientations of the disordered ...
Fig. 2.
View of the two-dimensional supramolecular structure formed by π–π stacking interactions (red dashed lines).

Crystal data

[Cd2(NCS)4(C24H20N6)2]F(000) = 1248
Mr = 1242.04Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 159 reflections
a = 10.1170 (5) Åθ = 1.7–28.3°
b = 24.0740 (12) ŵ = 1.04 mm1
c = 10.723 (1) ÅT = 293 K
β = 97.678 (1)°Block, colorless
V = 2588.2 (3) Å30.33 × 0.31 × 0.28 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer6112 independent reflections
Radiation source: fine-focus sealed tube2967 reflections with I > 2σ(I)
graphiteRint = 0.050
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.717, Tmax = 0.748k = −31→16
15880 measured reflectionsl = −11→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0255P)2] where P = (Fo2 + 2Fc2)/3
6112 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.6018 (4)−0.05645 (17)0.3451 (4)0.0634 (11)
H10.5438−0.08630.34630.076*
C20.5726 (4)−0.00252 (17)0.3591 (4)0.0625 (11)
H20.48920.01110.37100.075*
C30.7782 (4)−0.00550 (15)0.3340 (3)0.0419 (9)
C40.9121 (4)0.01421 (15)0.3240 (3)0.0474 (9)
C51.0101 (4)−0.01509 (18)0.2744 (5)0.0873 (15)
H50.9918−0.05010.23960.105*
C61.1351 (5)0.00779 (19)0.2766 (5)0.1046 (18)
H61.2023−0.01210.24550.126*
C71.1597 (4)0.05930 (18)0.3240 (4)0.0701 (12)
H71.24450.07490.32960.084*
C81.0561 (4)0.08777 (16)0.3635 (4)0.0607 (11)
H81.07110.12420.39070.073*
C90.8023 (3)−0.11083 (13)0.3109 (3)0.0483 (10)
H9A0.7642−0.13990.35770.058*
H9B0.8952−0.10680.34620.058*
C101.0699 (3)0.21467 (13)0.7506 (3)0.0465 (9)
H10A1.05280.25070.78550.056*
H10B1.12560.22020.68470.056*
C110.8661 (4)0.15565 (15)0.7598 (4)0.0536 (10)
H110.87910.14830.84570.064*
C120.7688 (3)0.13491 (15)0.6753 (4)0.0550 (11)
H120.70290.11040.69350.066*
C130.8852 (3)0.18861 (14)0.5747 (3)0.0432 (9)
C140.9230 (3)0.22131 (14)0.4689 (3)0.0440 (9)
C150.9941 (3)0.27037 (15)0.4804 (4)0.0515 (10)
H151.02270.28520.55940.062*
C161.0223 (3)0.29724 (15)0.3729 (4)0.0575 (11)
H161.07130.33000.37860.069*
C170.9765 (4)0.27452 (17)0.2572 (4)0.0621 (11)
H170.99600.29120.18360.075*
C180.9010 (4)0.22634 (16)0.2524 (4)0.0558 (10)
H180.86800.21180.17410.067*
C191.1433 (3)0.17880 (14)0.8525 (3)0.0432 (9)
C201.1505 (4)0.19548 (16)0.9760 (4)0.0568 (10)
H201.10860.22830.99460.068*
C211.2183 (4)0.16470 (18)1.0729 (4)0.0679 (12)
H211.22230.17671.15580.082*
C221.2797 (4)0.11638 (18)1.0455 (4)0.0704 (12)
H221.32610.09551.11010.084*
C231.2730 (4)0.09839 (15)0.9220 (4)0.0584 (11)
H231.31500.06550.90400.070*
C240.7961 (3)−0.12925 (14)0.1749 (3)0.0418 (9)
C250.6902 (5)0.09909 (19)0.0716 (4)0.0749 (14)
C260.4193 (4)0.16946 (16)0.4024 (4)0.0528 (10)
N10.9342 (3)0.06631 (12)0.3652 (3)0.0532 (8)
N20.6815 (3)0.02887 (12)0.3535 (3)0.0487 (8)
N30.7331 (3)−0.05881 (12)0.3288 (2)0.0465 (8)
N40.9427 (3)0.18963 (12)0.6960 (3)0.0438 (7)
N50.7813 (3)0.15517 (12)0.5587 (3)0.0494 (8)
N60.8737 (3)0.20017 (12)0.3549 (3)0.0505 (8)
N70.6949 (4)0.12982 (16)0.1462 (4)0.0913 (13)
N80.5058 (3)0.14232 (15)0.3802 (4)0.0835 (12)
S10.7164 (4)0.05643 (17)−0.0369 (4)0.1451 (15)*0.50
S1'0.6395 (3)0.05156 (10)−0.0503 (2)0.0658 (7)*0.50
S20.29671 (10)0.20853 (4)0.43058 (10)0.0628 (3)
Cd10.72240 (3)0.122387 (11)0.35612 (3)0.05177 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.050 (3)0.059 (3)0.083 (3)−0.011 (2)0.017 (2)−0.001 (2)
C20.046 (3)0.055 (3)0.088 (3)0.007 (2)0.013 (2)−0.010 (2)
C30.046 (2)0.036 (2)0.045 (2)0.0001 (18)0.0092 (18)−0.0034 (17)
C40.057 (3)0.036 (2)0.050 (2)0.0035 (19)0.0096 (19)−0.0005 (19)
C50.069 (3)0.053 (3)0.150 (4)−0.010 (2)0.054 (3)−0.029 (3)
C60.076 (4)0.058 (3)0.193 (6)−0.009 (3)0.065 (4)−0.036 (3)
C70.052 (3)0.058 (3)0.104 (3)−0.002 (2)0.025 (2)0.003 (3)
C80.057 (3)0.043 (3)0.081 (3)−0.006 (2)0.008 (2)−0.005 (2)
C90.056 (2)0.035 (2)0.054 (2)−0.0002 (17)0.0100 (19)0.0008 (18)
C100.048 (2)0.039 (2)0.051 (2)−0.0066 (17)0.0033 (18)−0.0084 (18)
C110.050 (2)0.057 (3)0.056 (3)0.000 (2)0.012 (2)−0.003 (2)
C120.044 (2)0.054 (3)0.070 (3)−0.0087 (19)0.017 (2)−0.007 (2)
C130.047 (2)0.033 (2)0.049 (2)0.0052 (17)0.0024 (19)−0.0047 (18)
C140.040 (2)0.034 (2)0.056 (3)0.0045 (16)0.0004 (18)−0.0026 (19)
C150.050 (2)0.040 (2)0.062 (3)−0.0024 (18)−0.006 (2)−0.002 (2)
C160.054 (3)0.042 (3)0.074 (3)−0.0046 (18)−0.003 (2)0.007 (2)
C170.067 (3)0.058 (3)0.061 (3)0.006 (2)0.006 (2)0.012 (2)
C180.060 (3)0.047 (3)0.058 (3)0.004 (2)0.000 (2)−0.001 (2)
C190.045 (2)0.040 (2)0.044 (2)−0.0025 (17)0.0036 (17)−0.0057 (19)
C200.057 (3)0.052 (3)0.060 (3)−0.002 (2)0.004 (2)−0.012 (2)
C210.079 (3)0.080 (4)0.046 (3)−0.005 (3)0.010 (2)−0.004 (2)
C220.076 (3)0.080 (4)0.052 (3)0.004 (3)−0.001 (2)0.011 (3)
C230.068 (3)0.046 (2)0.061 (3)0.003 (2)0.009 (2)0.012 (2)
C240.044 (2)0.036 (2)0.046 (2)−0.0075 (17)0.0049 (17)0.0002 (18)
C250.110 (4)0.062 (3)0.055 (3)0.020 (3)0.020 (3)0.014 (2)
C260.047 (3)0.044 (3)0.063 (3)−0.0120 (19)−0.012 (2)0.005 (2)
N10.052 (2)0.040 (2)0.068 (2)−0.0014 (15)0.0071 (16)−0.0059 (16)
N20.0443 (19)0.0429 (19)0.059 (2)−0.0029 (15)0.0063 (16)−0.0059 (16)
N30.049 (2)0.0359 (19)0.057 (2)0.0000 (15)0.0143 (16)−0.0063 (15)
N40.0421 (18)0.0418 (19)0.0469 (19)−0.0036 (14)0.0034 (15)−0.0023 (15)
N50.0431 (19)0.043 (2)0.061 (2)−0.0036 (15)0.0018 (16)−0.0008 (16)
N60.054 (2)0.0395 (19)0.057 (2)0.0040 (15)0.0019 (17)−0.0005 (17)
N70.119 (3)0.083 (3)0.066 (3)−0.013 (3)−0.008 (2)−0.004 (2)
N80.051 (2)0.071 (3)0.125 (3)0.0068 (19)−0.003 (2)−0.018 (2)
S20.0602 (7)0.0624 (8)0.0662 (7)0.0067 (5)0.0099 (6)−0.0016 (6)
Cd10.04836 (17)0.03862 (17)0.06495 (19)0.00251 (14)−0.00488 (12)−0.00671 (16)

Geometric parameters (Å, °)

C1—C21.344 (5)C14—N61.357 (4)
C1—N31.364 (4)C14—C151.379 (4)
C1—H10.9300C15—C161.385 (5)
C2—N21.343 (4)C15—H150.9300
C2—H20.9300C16—C171.378 (5)
C3—N21.319 (4)C16—H160.9300
C3—N31.361 (4)C17—C181.386 (5)
C3—C41.453 (5)C17—H170.9300
C4—N11.339 (4)C18—N61.327 (4)
C4—C51.380 (5)C18—H180.9300
C5—C61.376 (5)C19—C201.376 (4)
C5—H50.9300C19—C24i1.390 (4)
C6—C71.351 (5)C20—C211.382 (5)
C6—H60.9300C20—H200.9300
C7—C81.366 (5)C21—C221.369 (5)
C7—H70.9300C21—H210.9300
C8—N11.340 (4)C22—C231.387 (5)
C8—H80.9300C22—H220.9300
C9—N31.460 (4)C23—C24i1.388 (5)
C9—C241.517 (4)C23—H230.9300
C9—H9A0.9700C24—C23i1.388 (5)
C9—H9B0.9700C24—C19i1.390 (4)
C10—N41.470 (4)C25—N71.087 (5)
C10—C191.508 (4)C25—S11.600 (6)
C10—H10A0.9700C25—S1'1.761 (6)
C10—H10B0.9700C26—N81.143 (4)
C11—C121.342 (4)C26—S21.617 (4)
C11—N41.372 (4)N1—Cd12.523 (3)
C11—H110.9300N2—Cd12.289 (3)
C12—N51.363 (4)N5—Cd12.313 (3)
C12—H120.9300N6—Cd12.420 (3)
C13—N51.317 (4)N7—Cd12.238 (4)
C13—N41.352 (4)N8—Cd12.291 (4)
C13—C141.473 (5)
C2—C1—N3106.7 (3)C17—C18—H18118.6
C2—C1—H1126.7C20—C19—C24i119.1 (3)
N3—C1—H1126.7C20—C19—C10119.2 (3)
N2—C2—C1110.2 (3)C24i—C19—C10121.8 (3)
N2—C2—H2124.9C19—C20—C21121.6 (4)
C1—C2—H2124.9C19—C20—H20119.2
N2—C3—N3110.3 (3)C21—C20—H20119.2
N2—C3—C4121.7 (3)C22—C21—C20119.2 (4)
N3—C3—C4128.0 (3)C22—C21—H21120.4
N1—C4—C5120.7 (4)C20—C21—H21120.4
N1—C4—C3113.4 (3)C21—C22—C23120.3 (4)
C5—C4—C3125.9 (4)C21—C22—H22119.9
C6—C5—C4119.6 (4)C23—C22—H22119.9
C6—C5—H5120.2C22—C23—C24i120.2 (4)
C4—C5—H5120.2C22—C23—H23119.9
C7—C6—C5119.8 (4)C24i—C23—H23119.9
C7—C6—H6120.1C23i—C24—C19i119.6 (3)
C5—C6—H6120.1C23i—C24—C9121.0 (3)
C6—C7—C8117.8 (4)C19i—C24—C9119.4 (3)
C6—C7—H7121.1N7—C25—S1167.8 (6)
C8—C7—H7121.1N7—C25—S1'165.7 (5)
N1—C8—C7123.8 (4)S1—C25—S1'26.29 (17)
N1—C8—H8118.1N8—C26—S2178.6 (4)
C7—C8—H8118.1C4—N1—C8118.0 (3)
N3—C9—C24114.7 (3)C4—N1—Cd1112.7 (2)
N3—C9—H9A108.6C8—N1—Cd1124.9 (2)
C24—C9—H9A108.6C3—N2—C2106.5 (3)
N3—C9—H9B108.6C3—N2—Cd1118.8 (2)
C24—C9—H9B108.6C2—N2—Cd1134.5 (3)
H9A—C9—H9B107.6C3—N3—C1106.4 (3)
N4—C10—C19112.0 (3)C3—N3—C9130.5 (3)
N4—C10—H10A109.2C1—N3—C9123.0 (3)
C19—C10—H10A109.2C13—N4—C11105.6 (3)
N4—C10—H10B109.2C13—N4—C10129.2 (3)
C19—C10—H10B109.2C11—N4—C10124.7 (3)
H10A—C10—H10B107.9C13—N5—C12105.7 (3)
C12—C11—N4107.3 (3)C13—N5—Cd1115.6 (2)
C12—C11—H11126.3C12—N5—Cd1134.0 (2)
N4—C11—H11126.3C18—N6—C14118.5 (3)
C11—C12—N5109.7 (3)C18—N6—Cd1125.0 (3)
C11—C12—H12125.2C14—N6—Cd1116.2 (2)
N5—C12—H12125.2C25—N7—Cd1132.4 (4)
N5—C13—N4111.7 (3)C26—N8—Cd1156.1 (3)
N5—C13—C14120.8 (3)N7—Cd1—N293.92 (12)
N4—C13—C14127.4 (3)N7—Cd1—N895.98 (15)
N6—C14—C15121.7 (3)N2—Cd1—N891.91 (12)
N6—C14—C13113.0 (3)N7—Cd1—N5154.04 (13)
C15—C14—C13125.1 (3)N2—Cd1—N5111.75 (10)
C14—C15—C16119.3 (3)N8—Cd1—N587.30 (12)
C14—C15—H15120.4N7—Cd1—N685.78 (13)
C16—C15—H15120.4N2—Cd1—N6151.01 (10)
C17—C16—C15118.8 (4)N8—Cd1—N6116.98 (11)
C17—C16—H16120.6N5—Cd1—N669.97 (10)
C15—C16—H16120.6N7—Cd1—N194.16 (13)
C16—C17—C18118.9 (4)N2—Cd1—N168.00 (10)
C16—C17—H17120.5N8—Cd1—N1158.07 (12)
C18—C17—H17120.5N5—Cd1—N192.03 (10)
N6—C18—C17122.7 (4)N6—Cd1—N183.09 (10)
N6—C18—H18118.6
N3—C1—C2—N2−0.7 (5)C11—C12—N5—C13−0.9 (4)
N2—C3—C4—N114.9 (5)C11—C12—N5—Cd1152.6 (3)
N3—C3—C4—N1−163.3 (3)C17—C18—N6—C14−0.6 (5)
N2—C3—C4—C5−163.2 (4)C17—C18—N6—Cd1172.5 (3)
N3—C3—C4—C518.5 (6)C15—C14—N6—C183.4 (5)
N1—C4—C5—C65.2 (7)C13—C14—N6—C18179.7 (3)
C3—C4—C5—C6−176.8 (4)C15—C14—N6—Cd1−170.3 (2)
C4—C5—C6—C7−1.8 (8)C13—C14—N6—Cd16.0 (4)
C5—C6—C7—C8−2.8 (8)S1—C25—N7—Cd1−94 (2)
C6—C7—C8—N14.4 (7)S1'—C25—N7—Cd198.3 (18)
N4—C11—C12—N5−0.3 (4)S2—C26—N8—Cd177 (17)
N5—C13—C14—N6−21.0 (5)C25—N7—Cd1—N2−14.0 (6)
N4—C13—C14—N6162.0 (3)C25—N7—Cd1—N8−106.4 (6)
N5—C13—C14—C15155.2 (3)C25—N7—Cd1—N5157.5 (5)
N4—C13—C14—C15−21.8 (5)C25—N7—Cd1—N6136.9 (6)
N6—C14—C15—C16−3.6 (5)C25—N7—Cd1—N154.1 (6)
C13—C14—C15—C16−179.5 (3)C3—N2—Cd1—N780.3 (3)
C14—C15—C16—C171.0 (5)C2—N2—Cd1—N7−94.0 (4)
C15—C16—C17—C181.6 (6)C3—N2—Cd1—N8176.4 (3)
C16—C17—C18—N6−1.9 (6)C2—N2—Cd1—N82.1 (4)
N4—C10—C19—C20−108.1 (3)C3—N2—Cd1—N5−95.7 (3)
N4—C10—C19—C24i71.8 (4)C2—N2—Cd1—N590.0 (3)
C24i—C19—C20—C211.2 (5)C3—N2—Cd1—N6−8.1 (4)
C10—C19—C20—C21−178.9 (3)C2—N2—Cd1—N6177.6 (3)
C19—C20—C21—C22−0.2 (6)C3—N2—Cd1—N1−12.6 (2)
C20—C21—C22—C23−0.4 (6)C2—N2—Cd1—N1173.1 (4)
C21—C22—C23—C24i−0.1 (6)C26—N8—Cd1—N7−100.4 (9)
N3—C9—C24—C23i−1.1 (5)C26—N8—Cd1—N2165.5 (9)
N3—C9—C24—C19i−178.8 (3)C26—N8—Cd1—N553.8 (9)
C5—C4—N1—C8−3.8 (5)C26—N8—Cd1—N6−12.1 (10)
C3—C4—N1—C8178.0 (3)C26—N8—Cd1—N1142.5 (8)
C5—C4—N1—Cd1153.8 (3)C13—N5—Cd1—N7−36.8 (4)
C3—C4—N1—Cd1−24.4 (4)C12—N5—Cd1—N7171.7 (3)
C7—C8—N1—C4−1.1 (6)C13—N5—Cd1—N2134.1 (2)
C7—C8—N1—Cd1−155.7 (3)C12—N5—Cd1—N2−17.4 (3)
N3—C3—N2—C2−0.9 (4)C13—N5—Cd1—N8−134.9 (3)
C4—C3—N2—C2−179.4 (3)C12—N5—Cd1—N873.6 (3)
N3—C3—N2—Cd1−176.6 (2)C13—N5—Cd1—N6−14.9 (2)
C4—C3—N2—Cd14.9 (4)C12—N5—Cd1—N6−166.4 (3)
C1—C2—N2—C30.9 (5)C13—N5—Cd1—N167.0 (2)
C1—C2—N2—Cd1175.7 (3)C12—N5—Cd1—N1−84.5 (3)
N2—C3—N3—C10.5 (4)C18—N6—Cd1—N71.3 (3)
C4—C3—N3—C1178.9 (3)C14—N6—Cd1—N7174.6 (3)
N2—C3—N3—C9−179.1 (3)C18—N6—Cd1—N291.8 (3)
C4—C3—N3—C9−0.7 (6)C14—N6—Cd1—N2−95.0 (3)
C2—C1—N3—C30.1 (4)C18—N6—Cd1—N8−93.2 (3)
C2—C1—N3—C9179.7 (3)C14—N6—Cd1—N880.0 (3)
C24—C9—N3—C3−91.2 (4)C18—N6—Cd1—N5−169.2 (3)
C24—C9—N3—C189.4 (4)C14—N6—Cd1—N54.0 (2)
N5—C13—N4—C11−2.0 (4)C18—N6—Cd1—N196.1 (3)
C14—C13—N4—C11175.2 (3)C14—N6—Cd1—N1−90.7 (2)
N5—C13—N4—C10170.4 (3)C4—N1—Cd1—N7−72.4 (3)
C14—C13—N4—C10−12.5 (6)C8—N1—Cd1—N783.3 (3)
C12—C11—N4—C131.3 (4)C4—N1—Cd1—N220.1 (2)
C12—C11—N4—C10−171.4 (3)C8—N1—Cd1—N2175.9 (3)
C19—C10—N4—C13−140.8 (3)C4—N1—Cd1—N845.0 (4)
C19—C10—N4—C1130.2 (5)C8—N1—Cd1—N8−159.3 (3)
N4—C13—N5—C121.8 (4)C4—N1—Cd1—N5132.8 (2)
C14—C13—N5—C12−175.6 (3)C8—N1—Cd1—N5−71.4 (3)
N4—C13—N5—Cd1−157.4 (2)C4—N1—Cd1—N6−157.6 (3)
C14—C13—N5—Cd125.2 (4)C8—N1—Cd1—N6−1.9 (3)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2310).

References

  • Brandenburg, K. & Putz, H. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, R.-Q. (2002). Inorg. Chem.41, 1391–1396. [PubMed]
  • Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J.12, 6281–6289. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, R., Hong, M., Luo, J., Cao, R. & Weng, J. (2003). Chem. Commun. pp. 1018–1019. [PubMed]
  • Yam, V. W.-W. & Lo, K. K.-W. (1999). Chem Soc Rev 28, 323–334.
  • Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg Chem 43, 830–838. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography