PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o783–o784.
Published online 2010 March 10. doi:  10.1107/S1600536810008196
PMCID: PMC2983973

2-Amino-5-chloro­pyridinium trifluoro­acetate

Abstract

The asymmetric unit of the title salt, C5H6ClN2 +·C2F3O2 , contains two independent 2-amino-5-chloro­pyridinium cations and two independent trifluoro­acetate anions. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.672 (12):0.328 (12) and 0.587 (15):0.413 (15). In the crystal, the cations and anions are linked via N—H(...)O and C—H(...)O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For related structures, see: Pourayoubi et al. (2007 [triangle]); Hemamalini & Fun (2010a [triangle],b [triangle],c [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o783-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN2 +·C2F3O2
  • M r = 242.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o783-efi1.jpg
  • a = 5.0377 (1) Å
  • b = 11.2923 (2) Å
  • c = 17.5386 (3) Å
  • β = 90.001 (1)°
  • V = 997.72 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 296 K
  • 0.43 × 0.26 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.842, T max = 0.945
  • 17652 measured reflections
  • 4388 independent reflections
  • 3191 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.094
  • S = 1.03
  • 4388 reflections
  • 375 parameters
  • 110 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2096 Friedel pairs
  • Flack parameter: 0.01 (7)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008196/ci5043sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008196/ci5043Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). We have recently reported the crystal structures of 2-amino-5-chloropyridinium 4-hydroxybenzoate (Hemamalini & Fun, 2010a), 2-amino-5-chloropyridine benzoic acid (Hemamalini & Fun, 2010b) and 2-amino-5-chloropyridinium hydrogen succinate. (Hemamalini & Fun, 2010c). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.017 (3) Å for atom C3A in cation A and 0.026 (1) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A–N1A–C5A [122.7 (3)°] and C1B—N1B—C5B [123.2 (3)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths and angles are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the A/B type 2-amino-5-chloropyridinium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through a pair of N—H···O hydrogen bonds, forming an R22(8) (Bernstein et al., 1995) ring motif. The packing is further stabilized by weak C5A—H5AA···O2B and C5B—H5BA···O2A (Table 1) hydrogen bonds.

Experimental

To a hot methanol solution (20 ml) of 2-amino-5-chloropyridine (27 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement

All H atoms were located in a difference Fourier map and refined [N—H =0.87 (2)–0.94 (3) Å and C—H =0.94 (4)–0.98 (4) Å]; the N–H distances of the NH2 groups were restrained to be equal. The F atoms of both anions are disordered over two positions, with site occupancies of 0.672 (12) and 0.328 (12) in one of the anions, and 0.587 (15):0.413 (15) in the other anion. In each anion, the C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.
Fig. 2.
The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) networks.

Crystal data

C5H6ClN2+·C2F3O2F(000) = 488
Mr = 242.59Dx = 1.615 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 6764 reflections
a = 5.0377 (1) Åθ = 2.9–23.0°
b = 11.2923 (2) ŵ = 0.41 mm1
c = 17.5386 (3) ÅT = 296 K
β = 90.001 (1)°Blcok, colourless
V = 997.72 (3) Å30.43 × 0.26 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4388 independent reflections
Radiation source: fine-focus sealed tube3191 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −6→6
Tmin = 0.842, Tmax = 0.945k = −14→14
17652 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0781P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4388 reflectionsΔρmax = 0.12 e Å3
375 parametersΔρmin = −0.15 e Å3
110 restraintsAbsolute structure: Flack (1983), 2096 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (7)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1A1.1299 (2)0.65347 (8)0.53508 (6)0.0863 (3)
N1A0.6452 (5)0.84270 (19)0.40858 (15)0.0509 (6)
N2A0.5936 (6)1.0402 (2)0.38078 (18)0.0688 (7)
C1A0.7219 (6)0.9568 (2)0.41821 (16)0.0535 (7)
C2A0.9320 (6)0.9791 (3)0.46873 (17)0.0620 (7)
C3A1.0548 (7)0.8880 (3)0.50499 (18)0.0657 (8)
C4A0.9711 (6)0.7707 (2)0.49139 (16)0.0598 (7)
C5A0.7678 (6)0.7505 (3)0.44427 (18)0.0547 (7)
Cl1B0.6300 (2)0.84657 (8)0.66202 (6)0.0862 (3)
N1B0.1456 (5)0.65696 (18)0.78845 (16)0.0515 (6)
N2B0.0936 (6)0.4597 (2)0.81654 (19)0.0696 (7)
C1B0.2208 (6)0.5431 (2)0.77885 (16)0.0536 (7)
C2B0.4312 (6)0.5216 (3)0.72826 (17)0.0622 (7)
C3B0.5552 (7)0.6116 (3)0.69219 (18)0.0647 (8)
C4B0.4720 (6)0.7291 (2)0.70553 (16)0.0592 (7)
C5B0.2675 (6)0.7496 (2)0.75301 (17)0.0543 (7)
F1A0.1120 (15)0.2688 (5)0.6659 (3)0.103 (2)0.672 (12)
F2A−0.2319 (10)0.2039 (11)0.7180 (3)0.145 (3)0.672 (12)
F3A−0.002 (2)0.0953 (5)0.6438 (3)0.133 (3)0.672 (12)
F1C−0.050 (4)0.2829 (7)0.6917 (10)0.120 (5)0.328 (12)
F2C−0.217 (2)0.1179 (12)0.6924 (8)0.113 (4)0.328 (12)
F3C0.135 (3)0.1402 (18)0.6367 (6)0.143 (6)0.328 (12)
O1A0.2546 (5)0.21708 (17)0.80805 (12)0.0645 (5)
O2A0.1855 (6)0.0286 (2)0.77827 (16)0.0847 (7)
C6A0.1664 (6)0.1353 (3)0.76755 (19)0.0562 (7)
C7A0.0082 (7)0.1732 (3)0.69751 (19)0.0725 (9)
F1B0.6266 (18)0.7635 (7)1.0334 (4)0.106 (2)0.587 (15)
F2B0.2762 (14)0.7160 (13)0.9780 (4)0.134 (3)0.587 (15)
F3B0.473 (3)0.5940 (5)1.0508 (5)0.129 (3)0.587 (15)
F1D0.490 (4)0.7839 (5)1.0133 (8)0.120 (4)0.413 (15)
F2D0.2692 (17)0.6301 (14)0.9986 (7)0.123 (4)0.413 (15)
F3D0.615 (3)0.6227 (14)1.0603 (5)0.134 (4)0.413 (15)
O1B0.7544 (5)0.71703 (17)0.88936 (12)0.0642 (5)
O2B0.6855 (6)0.5286 (2)0.91889 (15)0.0840 (7)
C6B0.6665 (6)0.6354 (3)0.92942 (19)0.0560 (7)
C7B0.5093 (7)0.6735 (3)0.99991 (19)0.0718 (9)
H1NA0.507 (7)0.829 (3)0.3734 (17)0.059 (8)*
H2NA0.470 (6)1.021 (3)0.3463 (17)0.073 (10)*
H3NA0.652 (7)1.112 (2)0.388 (2)0.071 (10)*
H2AA0.998 (8)1.056 (4)0.477 (2)0.081 (10)*
H3AA1.194 (7)0.905 (3)0.543 (2)0.073 (10)*
H5AA0.694 (6)0.673 (3)0.4342 (16)0.050 (7)*
H1NB0.023 (7)0.672 (3)0.8221 (18)0.059 (9)*
H2NB−0.023 (5)0.479 (2)0.8537 (14)0.057 (8)*
H3NB0.143 (8)0.386 (2)0.811 (2)0.079 (11)*
H2BA0.494 (7)0.448 (3)0.719 (2)0.077 (10)*
H3BA0.701 (8)0.598 (4)0.656 (2)0.081 (11)*
H5BA0.192 (7)0.826 (3)0.7621 (19)0.065 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.0909 (6)0.0709 (6)0.0971 (6)0.0149 (5)−0.0160 (5)0.0077 (5)
N1A0.0552 (15)0.0349 (13)0.0625 (15)−0.0015 (9)−0.0004 (12)−0.0045 (10)
N2A0.082 (2)0.0340 (13)0.0903 (19)−0.0087 (13)−0.0106 (16)0.0013 (13)
C1A0.0606 (17)0.0382 (15)0.0618 (17)−0.0065 (12)0.0072 (14)−0.0057 (12)
C2A0.0690 (19)0.0444 (15)0.0727 (18)−0.0111 (14)0.0036 (15)−0.0073 (13)
C3A0.065 (2)0.067 (2)0.0655 (19)−0.0096 (16)−0.0006 (16)−0.0126 (15)
C4A0.0682 (19)0.0514 (15)0.0597 (15)0.0034 (14)0.0031 (14)−0.0035 (12)
C5A0.0636 (19)0.0372 (14)0.0634 (16)−0.0017 (13)0.0059 (14)−0.0033 (12)
Cl1B0.0915 (6)0.0693 (6)0.0976 (6)−0.0155 (5)0.0171 (5)0.0067 (5)
N1B0.0584 (16)0.0329 (13)0.0632 (16)0.0015 (10)0.0008 (12)−0.0044 (10)
N2B0.084 (2)0.0342 (13)0.0906 (19)0.0067 (13)0.0139 (16)0.0000 (13)
C1B0.0582 (17)0.0381 (16)0.0644 (18)0.0067 (12)−0.0075 (14)−0.0054 (12)
C2B0.0684 (19)0.0443 (15)0.0737 (18)0.0119 (14)−0.0043 (15)−0.0100 (13)
C3B0.067 (2)0.0648 (19)0.0627 (18)0.0089 (16)0.0010 (16)−0.0096 (15)
C4B0.0669 (18)0.0516 (15)0.0592 (15)−0.0050 (14)−0.0034 (14)−0.0023 (12)
C5B0.0641 (19)0.0370 (14)0.0617 (16)0.0009 (13)−0.0068 (14)−0.0045 (12)
F1A0.137 (5)0.087 (3)0.085 (3)−0.028 (3)−0.016 (2)0.036 (2)
F2A0.079 (3)0.232 (8)0.126 (4)0.045 (4)−0.002 (2)0.037 (5)
F3A0.211 (7)0.091 (3)0.096 (3)−0.004 (3)−0.049 (4)−0.036 (2)
F1C0.159 (10)0.061 (4)0.141 (8)0.016 (6)−0.064 (7)−0.002 (5)
F2C0.088 (6)0.104 (7)0.147 (8)−0.016 (5)−0.041 (5)0.011 (6)
F3C0.148 (9)0.204 (11)0.078 (6)−0.006 (7)0.005 (6)−0.007 (7)
O1A0.0824 (15)0.0373 (11)0.0737 (13)0.0111 (9)−0.0104 (11)−0.0062 (9)
O2A0.1066 (19)0.0374 (13)0.110 (2)0.0061 (12)−0.0211 (15)−0.0014 (12)
C6A0.0601 (18)0.0410 (16)0.0676 (18)0.0045 (13)0.0056 (13)−0.0019 (13)
C7A0.089 (3)0.0580 (19)0.071 (2)−0.0068 (18)−0.0022 (18)−0.0009 (15)
F1B0.122 (5)0.110 (5)0.085 (3)−0.021 (3)0.008 (3)−0.041 (3)
F2B0.086 (4)0.196 (8)0.122 (4)0.049 (5)0.006 (3)−0.022 (5)
F3B0.188 (8)0.085 (3)0.116 (4)−0.012 (4)0.061 (5)0.028 (3)
F1D0.174 (9)0.052 (3)0.134 (7)0.006 (5)0.077 (7)−0.007 (4)
F2D0.072 (4)0.141 (8)0.156 (7)−0.012 (5)0.030 (4)−0.026 (6)
F3D0.150 (8)0.184 (9)0.066 (4)−0.001 (6)0.001 (5)0.033 (5)
O1B0.0833 (15)0.0377 (11)0.0715 (13)0.0099 (9)0.0124 (11)0.0067 (9)
O2B0.1067 (19)0.0370 (12)0.1083 (19)0.0034 (12)0.0226 (14)0.0008 (12)
C6B0.0605 (18)0.0381 (16)0.0696 (18)0.0039 (13)−0.0061 (13)0.0001 (13)
C7B0.089 (3)0.0571 (19)0.070 (2)−0.0047 (18)0.0054 (18)0.0018 (15)

Geometric parameters (Å, °)

Cl1A—C4A1.726 (3)C2B—H2BA0.90 (4)
N1A—C1A1.355 (4)C3B—C4B1.411 (5)
N1A—C5A1.362 (4)C3B—H3BA0.98 (4)
N1A—H1NA0.94 (3)C4B—C5B1.345 (4)
N2A—C1A1.317 (4)C5B—H5BA0.95 (4)
N2A—H2NA0.90 (2)F1A—C7A1.321 (4)
N2A—H3NA0.87 (2)F2A—C7A1.308 (5)
C1A—C2A1.403 (4)F3A—C7A1.290 (5)
C2A—C3A1.358 (5)F1C—C7A1.276 (7)
C2A—H2AA0.94 (4)F2C—C7A1.299 (7)
C3A—C4A1.411 (5)F3C—C7A1.299 (7)
C3A—H3AA0.98 (4)O1A—C6A1.247 (4)
C4A—C5A1.336 (4)O2A—C6A1.223 (4)
C5A—H5AA0.97 (3)C6A—C7A1.525 (5)
Cl1B—C4B1.725 (3)F1B—C7B1.314 (5)
N1B—C1B1.351 (4)F2B—C7B1.325 (5)
N1B—C5B1.363 (4)F3B—C7B1.280 (5)
N1B—H1NB0.87 (3)F1D—C7B1.272 (6)
N2B—C1B1.317 (4)F2D—C7B1.306 (6)
N2B—H2NB0.902 (19)F3D—C7B1.317 (7)
N2B—H3NB0.87 (2)O1B—C6B1.240 (4)
C1B—C2B1.404 (4)O2B—C6B1.224 (4)
C2B—C3B1.351 (5)C6B—C7B1.530 (5)
C1A—N1A—C5A122.7 (3)C2B—C3B—C4B119.5 (3)
C1A—N1A—H1NA116.9 (18)C2B—C3B—H3BA122 (3)
C5A—N1A—H1NA120.4 (18)C4B—C3B—H3BA119 (3)
C1A—N2A—H2NA120 (2)C5B—C4B—C3B119.5 (3)
C1A—N2A—H3NA115 (3)C5B—C4B—Cl1B119.7 (2)
H2NA—N2A—H3NA124 (3)C3B—C4B—Cl1B120.8 (3)
N2A—C1A—N1A118.5 (3)C4B—C5B—N1B119.7 (3)
N2A—C1A—C2A123.8 (3)C4B—C5B—H5BA124 (2)
N1A—C1A—C2A117.7 (3)N1B—C5B—H5BA116 (2)
C3A—C2A—C1A120.2 (3)O2A—C6A—O1A127.9 (3)
C3A—C2A—H2AA118 (2)O2A—C6A—C7A116.2 (3)
C1A—C2A—H2AA122 (2)O1A—C6A—C7A115.9 (3)
C2A—C3A—C4A119.7 (3)F1C—C7A—F3C109.0 (10)
C2A—C3A—H3AA120 (2)F1C—C7A—F2C105.1 (8)
C4A—C3A—H3AA121 (2)F3C—C7A—F2C103.6 (9)
C5A—C4A—C3A119.6 (3)F3A—C7A—F2A110.2 (6)
C5A—C4A—Cl1A119.9 (2)F3A—C7A—F1A105.4 (5)
C3A—C4A—Cl1A120.4 (3)F2A—C7A—F1A105.4 (5)
C4A—C5A—N1A120.1 (3)F3A—C7A—C6A114.6 (4)
C4A—C5A—H5AA124.3 (18)F2A—C7A—C6A109.6 (3)
N1A—C5A—H5AA115.6 (18)F1A—C7A—C6A111.1 (3)
C1B—N1B—C5B123.2 (3)O2B—C6B—O1B128.2 (3)
C1B—N1B—H1NB118 (2)O2B—C6B—C7B116.1 (3)
C5B—N1B—H1NB118 (2)O1B—C6B—C7B115.7 (3)
C1B—N2B—H2NB120.5 (18)F1D—C7B—F2D107.5 (7)
C1B—N2B—H3NB119 (3)F3B—C7B—F1B107.1 (6)
H2NB—N2B—H3NB119 (3)F1D—C7B—F3D108.0 (9)
N2B—C1B—N1B118.8 (3)F2D—C7B—F3D103.0 (7)
N2B—C1B—C2B124.1 (3)F3B—C7B—F2B109.3 (6)
N1B—C1B—C2B117.1 (3)F1B—C7B—F2B104.3 (5)
C3B—C2B—C1B121.0 (3)F3B—C7B—C6B116.1 (4)
C3B—C2B—H2BA117 (2)F1B—C7B—C6B110.3 (4)
C1B—C2B—H2BA122 (2)F2B—C7B—C6B109.0 (4)
C5A—N1A—C1A—N2A179.3 (3)O2A—C6A—C7A—F3A−24.8 (7)
C5A—N1A—C1A—C2A−1.7 (4)O1A—C6A—C7A—F3A157.0 (6)
N2A—C1A—C2A—C3A−179.8 (3)O2A—C6A—C7A—F3C−66.6 (11)
N1A—C1A—C2A—C3A1.2 (4)O1A—C6A—C7A—F3C115.3 (11)
C1A—C2A—C3A—C4A0.3 (5)O2A—C6A—C7A—F2C47.5 (10)
C2A—C3A—C4A—C5A−1.5 (5)O1A—C6A—C7A—F2C−130.6 (9)
C2A—C3A—C4A—Cl1A178.4 (2)O2A—C6A—C7A—F2A99.7 (7)
C3A—C4A—C5A—N1A1.1 (4)O1A—C6A—C7A—F2A−78.4 (7)
Cl1A—C4A—C5A—N1A−178.8 (2)O2A—C6A—C7A—F1A−144.2 (5)
C1A—N1A—C5A—C4A0.5 (4)O1A—C6A—C7A—F1A37.6 (5)
C5B—N1B—C1B—N2B178.9 (3)O2B—C6B—C7B—F1D178.7 (12)
C5B—N1B—C1B—C2B−1.5 (4)O1B—C6B—C7B—F1D−2.6 (12)
N2B—C1B—C2B—C3B−179.1 (3)O2B—C6B—C7B—F3B17.6 (8)
N1B—C1B—C2B—C3B1.3 (4)O1B—C6B—C7B—F3B−163.7 (8)
C1B—C2B—C3B—C4B0.0 (5)O2B—C6B—C7B—F2D−56.8 (10)
C2B—C3B—C4B—C5B−1.1 (5)O1B—C6B—C7B—F2D121.9 (9)
C2B—C3B—C4B—Cl1B178.7 (3)O2B—C6B—C7B—F1B139.6 (6)
C3B—C4B—C5B—N1B0.9 (4)O1B—C6B—C7B—F1B−41.6 (6)
Cl1B—C4B—C5B—N1B−178.8 (2)O2B—C6B—C7B—F3D55.7 (9)
C1B—N1B—C5B—C4B0.4 (4)O1B—C6B—C7B—F3D−125.6 (9)
O2A—C6A—C7A—F1C169.3 (13)O2B—C6B—C7B—F2B−106.4 (8)
O1A—C6A—C7A—F1C−8.9 (13)O1B—C6B—C7B—F2B72.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.94 (3)1.79 (3)2.727 (3)173 (3)
N2A—H2NA···O2Ai0.90 (3)1.95 (3)2.840 (4)175 (3)
N2A—H3NA···O1Bii0.87 (3)2.00 (2)2.863 (3)171 (4)
N1B—H1NB···O1Biii0.87 (3)1.87 (3)2.734 (3)175 (3)
N2B—H2NB···O2Biii0.90 (2)1.94 (2)2.838 (4)170 (2)
N2B—H3NB···O1A0.87 (3)1.99 (2)2.861 (3)175 (4)
C5A—H5AA···O2Bi0.97 (3)2.29 (3)3.210 (4)158 (3)
C5B—H5BA···O2Aiv0.96 (3)2.31 (3)3.208 (3)157 (3)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+2, z−1/2; (iii) x−1, y, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5043).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o464–o465. [PMC free article] [PubMed]
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  • Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography