PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o798–o799.
Published online 2010 March 13. doi:  10.1107/S1600536810008494
PMCID: PMC2983971

Bis(ethyl­enediammonium) tetra­deca­borate

Abstract

The title compound, 2C2H10N2 2+·B14O20(OH)6 4−, consists of a centrosymmetric tetra­deca­borate anion and two ethyl­enediammonium cations. The anions are inter­connected through strong O—H(...)O hydrogen bonds into a three-dimensional supra­molecular network with channels along [100], [010], [001] and [111]. The diprotonated cations reside in the channels and inter­act with the inorganic framework by extensive N—H(...)O hydrogen bonds.

Related literature

For general background to the structures and applications of inorganic borates, see: Burns et al. (1995 [triangle]); Chen et al. (1995 [triangle]); Grice et al. (1999 [triangle]); Touboul et al. (2003 [triangle]); Wang et al. (2007 [triangle]). For some typical examples of organically templated non-metal borates, see: Li et al. (2008 [triangle]); Liu et al. (2006 [triangle]); Pan et al. (2007 [triangle]); Wang et al. (2004 [triangle]). For two typical examples of crystalline aluminoborates, see: Wang et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o798-scheme1.jpg

Experimental

Crystal data

  • 2C2H10N2 2+·B14H6O26 4−
  • M r = 697.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o798-efi1.jpg
  • a = 8.4849 (3) Å
  • b = 8.8387 (3) Å
  • c = 10.0406 (2) Å
  • α = 95.085 (2)°
  • β = 96.942 (3)°
  • γ = 116.856 (4)°
  • V = 658.08 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 293 K
  • 0.28 × 0.13 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.956, T max = 0.994
  • 5101 measured reflections
  • 2541 independent reflections
  • 2033 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.107
  • S = 1.03
  • 2541 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008494/hy2288sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008494/hy2288Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063-06300522).

supplementary crystallographic information

Comment

Borate materials have attracted considerable attention in the past decades owing to their fascinating structural diversities and promising applications in mineralogy, luminescence and nonlinear optical properties (Burns et al., 1995; Chen et al., 1995; Grice et al., 1999; Touboul et al., 2003; Wang et al., 2007). From a structural chemistry point of view, the ability of boron to adopt both BO4 and BO3 coordination modes, coupled with the tendency of such units to polymerize into a large range of polyanions, has made inorganic borates into a rapidly growing family. To date, borate materials with various alkali metal, alkaline earth metal, rare earth and transition metal, traditionally prepared under high temperature/pressure solid-state conditions, have been extensively studied. In contrast, the template synthesis of nonmetal borates is still a relatively undeveloped area. Recently, solvothermal method has been proved to be very effective in isolating such borates by employing various organic molecules as templates or structure-directing agents (Li et al., 2008; Liu et al., 2006; Pan et al., 2007; Wang et al., 2004). Our interest is to explore the introduction of aluminium into borate system, constructing novel microporous aluminoborate materials templated by organic agents with different shape and size (Wang et al., 2008a, b). Interestingly, the title compound was obtained, which is a new organically templated nonmetal tetradecaborate.

As shown in Fig. 1, the asymmetric unit of the title compound consists of one [B7O10(OH)3]2- anionic unit and one [C2H10N2]2+ cation. The anionic unit is composed of two BO4 tetrahedra [B3 and B5], two BO3 [B2 and B6] and three BO2(OH) [B1, B4 and B7] trigonal units, which forms three classic B3O3 cycles linked by two common BO4 tetrahedra. Two such [B7O10(OH)3]2- units are further jointed together through the exocyclic O atoms [O4 and O4i, symmetry code: (i) -x, -y, 2-z], generating the FBBs (Fundamental Building Blocks), a large isolated [B14O20(OH)6]4- polyanion. Thus, the borate FBBs, featuring one cyclic 8-membered ring (MR) and six 3-MRs, is made up of four BO4 and ten BO3 and BO2(OH) units. The B—O bond distances lie in the range 1.337 (3)–1.386 (3) Å for the BO3 triangles (av. 1.361 Å) and 1.430 (3)–1.489 (3) Å for the BO4 tetrahedra (av. 1.466 Å), in good agreement with those reported previously for other borate materials. The O—B—O bond angles of the BO4 tetrahedra lie in the range of 106.7 (2)–112.6 (2)° and those of the BO3 triangles span from 115.4 (2) to 123.4 (2)°; the averages for the corresponding angles are very close to 109.5 and 120°, respectively.

The FBBs, [B14O20(OH)6]4-, are connected with each other through strong intermolecular O—H···O hydrogen bonds (Table 1), forming a three-dimensional framework with channels along [100], [010], [001] and [111] directions. The diprotonated [C2H10N2]2+ cations reside in the channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).

Experimental

A mixture of H3BO3 (0.217 g), Al2O3 (0.104 g), ethylenediamine (0.42 ml), pyridine (5.0 ml) and H2O (0.90 ml) was sealed in a Teflon-lined steel autoclave, heated at 443 K for 10 d, and then cooled to room temperature. The colorless prism-shaped crystals were separated from the solution by filtration, washed with distilled water and dried in air.

Refinement

All H atoms were positioned geometrically and treated as riding atoms, with O—H = 0.82, N—H = 0.89 and C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y, 2-z.]
Fig. 2.
Different views (a) along [100] and (b) along [111] of the three-dimensional framework constructed from [B14O20(OH)6]4- anions, with [C2H10N2]2+ cations occupying channels. Hydrogen bonds are shown as dashed lines.

Crystal data

2C2H10N22+·B14H6O264Z = 1
Mr = 697.63F(000) = 356
Triclinic, P1Dx = 1.760 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4849 (3) ÅCell parameters from 5101 reflections
b = 8.8387 (3) Åθ = 2.1–26.0°
c = 10.0406 (2) ŵ = 0.16 mm1
α = 95.085 (2)°T = 293 K
β = 96.942 (3)°Prism, colorless
γ = 116.856 (4)°0.28 × 0.13 × 0.04 mm
V = 658.08 (3) Å3

Data collection

Bruker SMART APEX CCD diffractometer2541 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.956, Tmax = 0.994k = −10→10
5101 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1264P] where P = (Fo2 + 2Fc2)/3
2541 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B1−0.5849 (3)−0.5170 (3)0.8129 (2)0.0190 (5)
B2−0.4605 (3)−0.2456 (3)0.9547 (2)0.0180 (5)
B3−0.2914 (3)−0.2948 (3)0.7854 (2)0.0166 (5)
B4−0.2007 (3)−0.1473 (3)0.5881 (2)0.0166 (5)
B50.0303 (3)−0.1771 (3)0.7443 (2)0.0175 (5)
B60.3485 (3)0.0104 (3)0.8520 (2)0.0174 (5)
B70.2775 (3)−0.2278 (3)0.6835 (2)0.0189 (5)
O1−0.73216 (19)−0.67207 (18)0.76829 (15)0.0286 (4)
H1F−0.7172−0.72030.70110.043*
O2−0.42739 (18)−0.47558 (17)0.77218 (13)0.0203 (3)
O3−0.60553 (17)−0.40525 (18)0.90605 (14)0.0232 (3)
O4−0.48111 (18)−0.15100 (18)1.06075 (14)0.0211 (3)
O5−0.31106 (17)−0.18999 (17)0.90041 (13)0.0188 (3)
O6−0.11436 (17)−0.27927 (17)0.80925 (13)0.0175 (3)
O7−0.32891 (17)−0.23425 (18)0.65880 (13)0.0218 (3)
O8−0.25158 (18)−0.10364 (18)0.46895 (14)0.0245 (4)
H8A−0.1620−0.04040.44010.037*
O9−0.02594 (18)−0.10073 (19)0.63517 (14)0.0246 (4)
O100.10144 (17)−0.28587 (18)0.68168 (14)0.0230 (3)
O110.17413 (17)−0.03462 (17)0.84417 (13)0.0196 (3)
O120.40563 (17)−0.08058 (18)0.76988 (14)0.0221 (3)
O130.33259 (18)−0.31501 (19)0.59850 (14)0.0248 (4)
H13A0.4399−0.28320.62340.037*
C10.8308 (3)0.2448 (3)0.7230 (2)0.0251 (5)
H1A0.91160.22820.66990.030*
H1B0.72000.13760.70870.030*
C20.9149 (3)0.2927 (3)0.8712 (2)0.0248 (5)
H2A1.01840.40580.88680.030*
H2B0.82910.29770.92480.030*
N10.7928 (3)0.3808 (2)0.67745 (18)0.0284 (4)
H1C0.74330.35100.58970.043*
H1D0.89470.47890.68970.043*
H1E0.71730.39480.72540.043*
N20.9717 (2)0.1666 (2)0.91544 (17)0.0236 (4)
H2C1.02080.19771.00330.035*
H2D1.05180.16330.86730.035*
H2E0.87650.06310.90240.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.0211 (12)0.0190 (12)0.0172 (12)0.0090 (10)0.0043 (10)0.0053 (10)
B20.0159 (11)0.0207 (12)0.0179 (11)0.0094 (9)0.0017 (9)0.0020 (9)
B30.0139 (11)0.0185 (11)0.0171 (11)0.0069 (9)0.0044 (9)0.0032 (9)
B40.0171 (11)0.0167 (11)0.0167 (11)0.0083 (9)0.0042 (9)0.0019 (9)
B50.0131 (11)0.0209 (12)0.0183 (12)0.0076 (9)0.0030 (9)0.0035 (9)
B60.0175 (11)0.0228 (12)0.0138 (11)0.0103 (10)0.0045 (9)0.0054 (9)
B70.0158 (11)0.0266 (12)0.0158 (11)0.0112 (10)0.0024 (9)0.0036 (10)
O10.0228 (8)0.0213 (8)0.0322 (9)0.0024 (6)0.0106 (7)−0.0046 (7)
O20.0184 (7)0.0178 (7)0.0222 (8)0.0061 (6)0.0065 (6)0.0002 (6)
O30.0155 (7)0.0220 (8)0.0262 (8)0.0042 (6)0.0069 (6)−0.0024 (6)
O40.0150 (7)0.0232 (8)0.0213 (8)0.0072 (6)0.0033 (6)−0.0041 (6)
O50.0158 (7)0.0186 (7)0.0197 (7)0.0063 (6)0.0051 (6)−0.0010 (6)
O60.0141 (7)0.0220 (7)0.0173 (7)0.0085 (6)0.0040 (6)0.0051 (6)
O70.0133 (7)0.0334 (8)0.0201 (7)0.0107 (6)0.0048 (6)0.0096 (6)
O80.0175 (7)0.0308 (8)0.0231 (8)0.0081 (6)0.0045 (6)0.0115 (6)
O90.0146 (7)0.0334 (8)0.0254 (8)0.0085 (6)0.0063 (6)0.0147 (7)
O100.0150 (7)0.0255 (8)0.0251 (8)0.0086 (6)0.0020 (6)−0.0056 (6)
O110.0141 (7)0.0216 (7)0.0221 (8)0.0085 (6)0.0036 (6)−0.0025 (6)
O120.0140 (7)0.0267 (8)0.0233 (8)0.0091 (6)0.0027 (6)−0.0045 (6)
O130.0149 (7)0.0349 (9)0.0233 (8)0.0133 (7)−0.0001 (6)−0.0064 (7)
C10.0281 (12)0.0204 (11)0.0263 (12)0.0123 (9)0.0008 (9)0.0005 (9)
C20.0277 (12)0.0251 (12)0.0238 (12)0.0141 (10)0.0047 (9)0.0039 (9)
N10.0355 (11)0.0266 (10)0.0234 (10)0.0175 (9)−0.0022 (8)−0.0021 (8)
N20.0239 (10)0.0296 (10)0.0188 (9)0.0133 (8)0.0046 (7)0.0054 (8)

Geometric parameters (Å, °)

B1—O21.343 (3)B7—O101.340 (3)
B1—O11.360 (3)B7—O131.359 (3)
B1—O31.383 (3)B7—O121.386 (3)
B2—O51.341 (3)O1—H1F0.8200
B2—O41.372 (3)O4—B6i1.372 (3)
B2—O31.381 (3)O8—H8A0.8200
B3—O61.433 (3)O13—H13A0.8200
B3—O21.471 (3)C1—N11.474 (3)
B3—O71.476 (3)C1—C21.503 (3)
B3—O51.489 (3)C1—H1A0.9700
B4—O71.344 (3)C1—H1B0.9700
B4—O91.355 (3)C2—N21.481 (3)
B4—O81.369 (3)C2—H2A0.9700
B5—O61.430 (3)C2—H2B0.9700
B5—O111.474 (3)N1—H1C0.8900
B5—O91.477 (3)N1—H1D0.8900
B5—O101.480 (3)N1—H1E0.8900
B6—O111.337 (3)N2—H2C0.8900
B6—O4i1.372 (3)N2—H2D0.8900
B6—O121.376 (3)N2—H2E0.8900
O2—B1—O1122.44 (19)B5—O6—B3125.67 (16)
O2—B1—O3121.71 (19)B4—O7—B3122.80 (16)
O1—B1—O3115.84 (18)B4—O8—H8A109.5
O5—B2—O4123.39 (19)B4—O9—B5122.54 (16)
O5—B2—O3121.17 (18)B7—O10—B5121.89 (17)
O4—B2—O3115.44 (18)B6—O11—B5123.54 (16)
O6—B3—O2110.41 (17)B6—O12—B7118.51 (17)
O6—B3—O7112.48 (16)B7—O13—H13A109.5
O2—B3—O7106.77 (16)N1—C1—C2110.38 (17)
O6—B3—O5109.26 (16)N1—C1—H1A109.6
O2—B3—O5109.91 (16)C2—C1—H1A109.6
O7—B3—O5107.96 (16)N1—C1—H1B109.6
O7—B4—O9120.90 (18)C2—C1—H1B109.6
O7—B4—O8117.95 (18)H1A—C1—H1B108.1
O9—B4—O8121.13 (18)N2—C2—C1111.20 (17)
O6—B5—O11110.14 (16)N2—C2—H2A109.4
O6—B5—O9112.55 (16)C1—C2—H2A109.4
O11—B5—O9107.35 (16)N2—C2—H2B109.4
O6—B5—O10109.49 (17)C1—C2—H2B109.4
O11—B5—O10109.92 (16)H2A—C2—H2B108.0
O9—B5—O10107.33 (16)C1—N1—H1C109.5
O11—B6—O4i122.59 (19)C1—N1—H1D109.5
O11—B6—O12121.46 (19)H1C—N1—H1D109.5
O4i—B6—O12115.93 (18)C1—N1—H1E109.5
O10—B7—O13119.34 (19)H1C—N1—H1E109.5
O10—B7—O12121.74 (19)H1D—N1—H1E109.5
O13—B7—O12118.91 (18)C2—N2—H2C109.5
B1—O1—H1F109.5C2—N2—H2D109.5
B1—O2—B3120.65 (17)H2C—N2—H2D109.5
B2—O3—B1118.42 (16)C2—N2—H2E109.5
B2—O4—B6i127.25 (17)H2C—N2—H2E109.5
B2—O5—B3122.53 (16)H2D—N2—H2E109.5

Symmetry codes: (i) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1F···O8ii0.822.112.909 (2)165
O8—H8A···O9iii0.821.832.6433 (19)176
O13—H13A···O7iv0.821.792.6030 (18)172
N1—H1C···O13v0.891.872.755 (2)172
N1—H1D···O10vi0.892.042.919 (2)168
N1—H1E···O2vi0.892.092.892 (2)150
N2—H2C···O6vii0.891.892.777 (2)174
N2—H2D···O1viii0.892.182.926 (2)141
N2—H2E···O5iv0.892.082.951 (2)168

Symmetry codes: (ii) −x−1, −y−1, −z+1; (iii) −x, −y, −z+1; (iv) x+1, y, z; (v) −x+1, −y, −z+1; (vi) x+1, y+1, z; (vii) −x+1, −y, −z+2; (viii) x+2, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2288).

References

  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral.33, 1131–1151.
  • Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324.
  • Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral.37, 731–761.
  • Li, H., Wang, G.-M., Xue, S.-Y. & Liang, Q. (2008). Acta Cryst. E64, m1269–m1270. [PMC free article] [PubMed]
  • Liu, Z.-H., Li, L.-Q. & Zhang, W.-J. (2006). Inorg. Chem.45, 1430–1432. [PubMed]
  • Pan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Z. Anorg. Allg. Chem.633, 336–340.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci.5, 1327–1342.
  • Wang, M.-S., Guo, G.-C., Chen, W.-T., Xu, G., Zhou, W.-W., Wu, K.-J. & Huang, J.-S. (2007). Angew. Chem. Int. Ed.46, 3909–3911. [PubMed]
  • Wang, G.-M., Li, J.-H., Huang, H.-L., Li, H. & Zhang, J. (2008a). Inorg. Chem.47, 5039–5041. [PubMed]
  • Wang, G.-M., Li, J.-H., Li, Z.-X., Huang, H.-L., Xue, S.-Y. & Liu, H.-L. (2008b). Inorg. Chem.47, 1270–1272. [PubMed]
  • Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem.177, 4648–4654.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography