PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o895.
Published online 2010 March 20. doi:  10.1107/S1600536810009347
PMCID: PMC2983964

4-Iodo­anilinium perchlorate

Abstract

In the crystal structure of the title compound, C6H7IN+·ClO4 , the ions are connected in a three-dimensional hydrogen-bonded network via N—H(...)O hydrogen bonds.

Related literature

For related structures, see: Paixao et al. (1999 [triangle]); Wiedenfeld et al. (2004 [triangle]); Bendjeddou et al. (2003 [triangle]); Kapoor et al. (2008 [triangle]). For the synthetic strategy, see: Cinčić & Kaitner (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o895-scheme1.jpg

Experimental

Crystal data

  • C6H7IN+·ClO4
  • M r = 319.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o895-efi1.jpg
  • a = 5.105 (1) Å
  • b = 7.2445 (14) Å
  • c = 13.359 (3) Å
  • α = 89.47 (3)°
  • β = 88.74 (3)°
  • γ = 74.61 (3)°
  • V = 476.22 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.63 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.484, T max = 0.489
  • 4945 measured reflections
  • 2180 independent reflections
  • 1956 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.071
  • S = 1.11
  • 2180 reflections
  • 119 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009347/fi2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009347/fi2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University.

supplementary crystallographic information

Comment

To the present day a lot of structures of phenylamine perchlorate have been reported (Paixao, et al., (1999); Wiedenfeld, et al., (2004); Bendjeddou, et al., 2003; Kapoor, et al., (2008))). As part of our on-going studies on new anilinium perchloratecompounds, the crystal structure of the title compound (I) is reported herein.

The molecular structure of the title compound is shown in Figure 1. The asymmetric unit consists of one protonated 4-iodobenzenamine cation and one perchlorate anion. All bond lengths and bond angles correspond to the geometry parameters expected for atom types and the type of hybirdization (Allen et al., 1987).

The ions are connected in three-dimensional hydrogen-bonded network via N—H···O hydrogen bonds. All ammonium group H atoms are involved in the hydrogen bonding with three O-atoms of neighbouring perchlorate anion and O-atom of carbonyl group of neighbouring cation (Figure 2).

Experimental

The preparation of 4-iodoanilinium perchlorateis analogous to that of the compound 4-acetylanilinium perchlorate (Cinčić & Kaitner, 2007). Perchloric acid (3ml,0.16mol/L) was added to a solution of 4-iodobenzenamine (100mg) in ethanol (10ml) and the mixture was stirred for 30 min at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the mixed solution at room temperature after 3 days.

Refinement

H atoms were placed at calculated position and were allowed to ride on the respective carrier atom with C—H = 0.93 Å, N—H = 0.86 Å.

Figures

Fig. 1.
A partial packing diagram of the title compound, with the displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound viewed along the a axis. Intermolecular N—H···O hydrogen bonds are shown as dashed lines.

Crystal data

C6H7IN+·ClO4Z = 2
Mr = 319.48F(000) = 304
Triclinic, P1Dx = 2.228 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.105 (1) ÅCell parameters from 2239 reflections
b = 7.2445 (14) Åθ = 2.6–27.5°
c = 13.359 (3) ŵ = 3.63 mm1
α = 89.47 (3)°T = 298 K
β = 88.74 (3)°Prism, colourless
γ = 74.61 (3)°0.20 × 0.20 × 0.20 mm
V = 476.22 (17) Å3

Data collection

Rigaku SCXmini diffractometer2180 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.484, Tmax = 0.489l = −17→17
4945 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.071w = 1/[σ2(Fo2) + (0.0248P)2 + 0.188P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2180 reflectionsΔρmax = 0.56 e Å3
119 parametersΔρmin = −0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.081 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.32432 (5)0.26989 (3)0.544100 (17)0.05266 (14)
N1−0.0662 (6)0.2407 (4)0.1042 (2)0.0407 (6)
H1A−0.15900.15290.10070.061*
H1B0.07480.21110.06150.061*
H1C−0.17380.35500.08850.061*
C40.0315 (6)0.2457 (4)0.2062 (2)0.0323 (6)
C3−0.0309 (7)0.1257 (5)0.2764 (3)0.0436 (8)
H3A−0.13180.04100.26000.052*
C10.2064 (7)0.2578 (5)0.3963 (2)0.0371 (7)
C60.2694 (7)0.3764 (5)0.3249 (3)0.0458 (8)
H6A0.37220.46000.34100.055*
C50.1789 (7)0.3708 (5)0.2285 (3)0.0418 (8)
H5A0.21820.45180.17930.050*
C20.0591 (8)0.1326 (5)0.3724 (3)0.0482 (9)
H2A0.01930.05150.42140.058*
Cl10.53128 (14)0.77646 (10)0.10960 (6)0.03387 (18)
O10.5785 (6)0.6817 (5)0.2029 (2)0.0789 (10)
O20.6164 (6)0.9461 (4)0.1103 (2)0.0662 (8)
O30.6814 (6)0.6528 (4)0.0338 (2)0.0713 (9)
O40.2516 (5)0.8204 (4)0.0874 (2)0.0545 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0751 (2)0.04546 (18)0.03956 (17)−0.01822 (13)−0.01787 (12)−0.00395 (11)
N10.0449 (15)0.0431 (15)0.0372 (15)−0.0169 (13)−0.0061 (12)0.0021 (12)
C40.0333 (15)0.0308 (15)0.0315 (15)−0.0063 (12)−0.0031 (12)−0.0006 (12)
C30.054 (2)0.0471 (19)0.0392 (18)−0.0294 (17)−0.0100 (15)0.0040 (15)
C10.0432 (17)0.0353 (16)0.0326 (16)−0.0092 (14)−0.0074 (13)−0.0042 (13)
C60.058 (2)0.0442 (19)0.0445 (19)−0.0295 (17)−0.0065 (16)−0.0043 (15)
C50.056 (2)0.0386 (17)0.0366 (17)−0.0218 (16)−0.0043 (15)0.0026 (14)
C20.066 (2)0.050 (2)0.0378 (18)−0.0307 (19)−0.0082 (17)0.0097 (16)
Cl10.0339 (4)0.0333 (4)0.0364 (4)−0.0124 (3)−0.0025 (3)0.0032 (3)
O10.078 (2)0.098 (3)0.0568 (18)−0.0186 (19)−0.0113 (16)0.0420 (18)
O20.0738 (18)0.0503 (16)0.088 (2)−0.0392 (15)−0.0154 (16)0.0023 (15)
O30.0726 (19)0.0593 (18)0.078 (2)−0.0115 (15)0.0276 (17)−0.0246 (16)
O40.0369 (13)0.0721 (18)0.0562 (16)−0.0164 (12)−0.0093 (11)−0.0044 (14)

Geometric parameters (Å, °)

I1—C12.086 (3)C1—C61.368 (4)
N1—C41.465 (4)C6—C51.382 (5)
N1—H1A0.8900C6—H6A0.9300
N1—H1B0.8900C5—H5A0.9300
N1—H1C0.8900C2—H2A0.9300
C4—C51.361 (4)Cl1—O21.408 (2)
C4—C31.362 (4)Cl1—O11.412 (3)
C3—C21.377 (5)Cl1—O41.416 (2)
C3—H3A0.9300Cl1—O31.426 (3)
C1—C21.366 (5)
C4—N1—H1A109.5C1—C6—C5119.4 (3)
C4—N1—H1B109.5C1—C6—H6A120.3
H1A—N1—H1B109.5C5—C6—H6A120.3
C4—N1—H1C109.5C4—C5—C6119.3 (3)
H1A—N1—H1C109.5C4—C5—H5A120.3
H1B—N1—H1C109.5C6—C5—H5A120.3
C5—C4—C3121.9 (3)C1—C2—C3120.6 (3)
C5—C4—N1119.4 (3)C1—C2—H2A119.7
C3—C4—N1118.7 (3)C3—C2—H2A119.7
C4—C3—C2118.4 (3)O2—Cl1—O1110.7 (2)
C4—C3—H3A120.8O2—Cl1—O4109.57 (18)
C2—C3—H3A120.8O1—Cl1—O4110.10 (18)
C2—C1—C6120.4 (3)O2—Cl1—O3108.95 (19)
C2—C1—I1118.9 (2)O1—Cl1—O3108.8 (2)
C6—C1—I1120.6 (2)O4—Cl1—O3108.73 (19)
C5—C4—C3—C20.0 (5)N1—C4—C5—C6179.6 (3)
N1—C4—C3—C2−179.3 (3)C1—C6—C5—C4−0.8 (5)
C2—C1—C6—C51.1 (5)C6—C1—C2—C3−0.8 (6)
I1—C1—C6—C5−177.3 (3)I1—C1—C2—C3177.6 (3)
C3—C4—C5—C60.3 (5)C4—C3—C2—C10.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.123.002 (4)174
N1—H1B···O3ii0.892.172.911 (4)141
N1—H1C···O3iii0.892.213.069 (4)162

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2083).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  • Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576.
  • Cinčić, D. & Kaitner, B. (2007). Acta Cryst. E63, o4672.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Kapoor, I. P. S., Srivastava, P., Singh, G. & Frohlich, R. (2008). J. Phys. Chem. A, 112, 652–659. [PubMed]
  • Paixao, J. A., Matos Bejia, A., Ramos Silva, M., Alte da Veiga, L. & Martin-Gil, J. (1999). Z. Kristallogr. New Cryst. Struct.214, 85–86.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wiedenfeld, D., Minton, M., Nesterov, V. & Montoya, C. (2004). J. Chem. Crystallogr 34, 95–101.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography