PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o986.
Published online 2010 March 31. doi:  10.1107/S1600536810011359
PMCID: PMC2983960

2-Bromo-2-(5-bromo-1H-1,2,4-triazol-1-yl)-1-(2,4-difluoro­phen­yl)ethanone

Abstract

In the title compound, C10H5Br2F2N3O, the mean planes of the benzene and triazole rings form a dihedral angle of 84.86 (2)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link mol­ecules into extended chains propagating along the c axis.

Related literature

For general properties of 1,2,4-triazole derivatives, see: Garfunkle et al. (2008 [triangle]); Yu et al. (2009 [triangle]). For their anti­microbial activity, see: Luo et al. (2009 [triangle]); Zhang et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o986-scheme1.jpg

Experimental

Crystal data

  • C10H5Br2F2N3O
  • M r = 380.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o986-efi1.jpg
  • a = 9.273 (2) Å
  • b = 9.375 (2) Å
  • c = 14.982 (3) Å
  • β = 104.916 (3)°
  • V = 1258.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.46 mm−1
  • T = 298 K
  • 0.26 × 0.25 × 0.25 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.199, T max = 0.203
  • 6096 measured reflections
  • 2206 independent reflections
  • 1577 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.100
  • S = 1.04
  • 2206 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011359/lh5016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011359/lh5016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

supplementary crystallographic information

Comment

1,2,4-Triazole derivatives are important types of nitrogen-containing aromatic heterocyclic compounds with excellent safety profiles, favorable pharmacokinetic characteristics and a wide range of biological activities (Garfunkle et al., 2008; Yu et al., 2009). Our attention has been focused on the discovery of novel 1,2,4-triazole compounds as antimicrobial agents, and we found that some reported 1,2,4-triazole compounds display significant antimicrobial activities (Luo et al., 2009; Zhang et al., 2010). As part of our research research, we report herein structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. The mean planes of the benzene and triazole rings form a dihedral angle of 84.86 (2) °. In the crystal structure weak intermolecular C—H···O hydrogen bonds link molecules into extended chains along the c axis.

Experimental

To a solution of 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (1.0 g, 4.4 mmol), sodium acetate (1.4 g, 4.4 mmol) and acetic acid (4 ml) was added the mixture of Br2 (0.45 ml) and acetic acid (2.5 ml) dropwise, and stirred at 338-348 K. The progress of the reaction was monitored by TLC. Upon completion, the reaction was extracted with chloroform (15 ml × 3). The filtrate was concentrated and then directly purified by chromatographic column (chloroform) to afford the title compound (I). A crystal suitable for X-ray analysis was grown from a solution of (I) in a mixture of petroleum and chloroform by slow evaporation at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å and 0.98Å with Uiso(H) = 1.2Ueq(C)

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C10H5Br2F2N3OF(000) = 728
Mr = 380.99Dx = 2.011 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1838 reflections
a = 9.273 (2) Åθ = 2.3–22.5°
b = 9.375 (2) ŵ = 6.46 mm1
c = 14.982 (3) ÅT = 298 K
β = 104.916 (3)°Block, colourless
V = 1258.5 (5) Å30.26 × 0.25 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2206 independent reflections
Radiation source: fine-focus sealed tube1577 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→11
Tmin = 0.199, Tmax = 0.203k = −10→11
6096 measured reflectionsl = −15→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5764P] where P = (Fo2 + 2Fc2)/3
2206 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.88429 (6)0.61973 (5)0.21078 (5)0.0741 (2)
Br20.65968 (6)0.75021 (7)0.40152 (3)0.0777 (2)
C10.7324 (6)1.0030 (5)0.1617 (4)0.0783 (17)
H10.73431.09490.13870.094*
C20.7921 (5)0.7951 (5)0.1945 (3)0.0512 (11)
C30.5841 (4)0.7348 (5)0.2679 (3)0.0426 (10)
H30.59270.63550.24960.051*
C40.4187 (5)0.7796 (4)0.2384 (3)0.0426 (10)
C50.3310 (4)0.7498 (4)0.1425 (3)0.0375 (9)
C60.3760 (5)0.6720 (4)0.0765 (3)0.0424 (10)
C70.2865 (5)0.6440 (5)−0.0092 (3)0.0502 (11)
H70.32050.5910−0.05210.060*
C80.1455 (6)0.6970 (5)−0.0291 (3)0.0576 (12)
C90.0924 (5)0.7769 (6)0.0313 (4)0.0656 (14)
H9−0.00440.81270.01520.079*
C100.1867 (5)0.8030 (5)0.1170 (3)0.0553 (12)
H100.15250.85790.15910.066*
F10.5154 (3)0.6180 (3)0.09542 (17)0.0645 (8)
F20.0553 (3)0.6703 (4)−0.11300 (19)0.0911 (10)
N10.8368 (5)0.9052 (4)0.1564 (3)0.0719 (13)
N20.6690 (4)0.8238 (4)0.2223 (2)0.0450 (9)
N30.6279 (4)0.9620 (4)0.2011 (3)0.0602 (10)
O10.3620 (4)0.8357 (4)0.2925 (2)0.0640 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0500 (3)0.0474 (3)0.1299 (5)0.0074 (2)0.0324 (3)−0.0047 (3)
Br20.0597 (4)0.1177 (5)0.0494 (3)−0.0031 (3)0.0025 (2)−0.0060 (3)
C10.075 (4)0.046 (3)0.133 (5)0.008 (3)0.063 (4)0.018 (3)
C20.039 (3)0.041 (3)0.075 (3)−0.001 (2)0.016 (2)−0.010 (2)
C30.039 (2)0.044 (2)0.045 (2)−0.0020 (19)0.0114 (19)−0.0029 (19)
C40.039 (2)0.042 (2)0.051 (2)−0.0024 (19)0.019 (2)−0.0017 (19)
C50.034 (2)0.038 (2)0.044 (2)−0.0016 (18)0.0159 (17)−0.0005 (18)
C60.034 (2)0.047 (2)0.049 (2)0.012 (2)0.016 (2)0.004 (2)
C70.045 (3)0.063 (3)0.042 (2)0.013 (2)0.011 (2)−0.003 (2)
C80.055 (3)0.064 (3)0.047 (3)0.008 (3)0.001 (2)−0.003 (2)
C90.036 (3)0.088 (4)0.068 (3)0.014 (3)0.005 (2)−0.013 (3)
C100.037 (3)0.067 (3)0.063 (3)0.006 (2)0.016 (2)−0.020 (2)
F10.0477 (16)0.085 (2)0.0583 (16)0.0246 (14)0.0088 (12)−0.0174 (14)
F20.067 (2)0.136 (3)0.0549 (17)0.030 (2)−0.0130 (15)−0.0225 (18)
N10.065 (3)0.048 (3)0.120 (4)0.000 (2)0.056 (3)0.006 (2)
N20.036 (2)0.037 (2)0.064 (2)−0.0055 (16)0.0180 (17)−0.0069 (17)
N30.058 (3)0.038 (2)0.096 (3)0.0038 (19)0.039 (2)0.006 (2)
O10.052 (2)0.085 (2)0.058 (2)0.0053 (18)0.0201 (16)−0.0244 (18)

Geometric parameters (Å, °)

Br1—C21.840 (4)C5—C61.378 (5)
Br2—C31.948 (4)C5—C101.387 (6)
C1—N31.314 (6)C6—F11.348 (4)
C1—N11.351 (6)C6—C71.362 (6)
C1—H10.9300C7—C81.358 (6)
C2—N11.297 (6)C7—H70.9300
C2—N21.339 (5)C8—F21.342 (5)
C3—N21.435 (5)C8—C91.361 (7)
C3—C41.541 (6)C9—C101.376 (6)
C3—H30.9800C9—H90.9300
C4—O11.196 (5)C10—H100.9300
C4—C51.483 (6)N2—N31.365 (5)
N3—C1—N1116.8 (4)F1—C6—C5119.9 (4)
N3—C1—H1121.6C7—C6—C5123.7 (4)
N1—C1—H1121.6C8—C7—C6117.1 (4)
N1—C2—N2111.8 (4)C8—C7—H7121.5
N1—C2—Br1125.4 (3)C6—C7—H7121.5
N2—C2—Br1122.8 (3)F2—C8—C7118.1 (4)
N2—C3—C4109.4 (3)F2—C8—C9118.7 (4)
N2—C3—Br2110.5 (3)C7—C8—C9123.2 (4)
C4—C3—Br2110.1 (3)C8—C9—C10117.8 (4)
N2—C3—H3108.9C8—C9—H9121.1
C4—C3—H3108.9C10—C9—H9121.1
Br2—C3—H3108.9C9—C10—C5122.0 (4)
O1—C4—C5120.8 (4)C9—C10—H10119.0
O1—C4—C3120.2 (4)C5—C10—H10119.0
C5—C4—C3119.0 (3)C2—N1—C1101.5 (4)
C6—C5—C10116.2 (4)C2—N2—N3109.1 (4)
C6—C5—C4127.1 (4)C2—N2—C3130.4 (4)
C10—C5—C4116.7 (4)N3—N2—C3120.5 (3)
F1—C6—C7116.4 (3)C1—N3—N2100.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.553.229 (5)130

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5016).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Garfunkle, J., Ezzili, C., Rayl, T. J., Hochstatter, D., Hwang, G. I. & Boger, D. L. (2008). J. Med. Chem.51, 937–947. [PMC free article] [PubMed]
  • Luo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci.342, 386–393. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, G.-P., Xu, L.-Z., Yi, X., Bi, W.-Z., Zhu, Q. & Zhai, Z.-W. (2009). J. Agric. Food Chem.57, 4854–4860. [PubMed]
  • Zhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010). Bioorg. Med. Chem. Lett.20, 1881–1884. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography