PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o819.
Published online 2010 March 13. doi:  10.1107/S1600536810008913
PMCID: PMC2983959

Bis(2-carboxy­anilinium) sulfate monohydrate

Abstract

In the title hydrated mol­ecular salt, 2C7H8NO2 +·SO4 2−·H2O, each cation in the asymmetric unit is stabilized by an intra­molecular N—H(...)O hydrogen bond. The O atoms of the sulfate ion are disordered over two sets of sites with an occupancy ratio of 0.541 (13):0.459 (13), which possibly optimizes the acceptance of N—H(...)O hydrogen bonds from the cations. The crystal structure also features aromatic π–π stacking [centroid–centroid separation = 3.842 (2) Å] and a C—H(...)π inter­action.

Related literature

For background to the properties and uses of amino­benzoic acids, see: Griss et al. (1984 [triangle]); Pedanova et al. (1984 [triangle]); Refaat (2010 [triangle]); Rogers & Clark (1973 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o819-scheme1.jpg

Experimental

Crystal data

  • 2C7H8NO2 +·SO4 2−·H2O
  • M r = 390.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o819-efi1.jpg
  • a = 11.260 (5) Å
  • b = 10.542 (4) Å
  • c = 15.358 (5) Å
  • β = 109.737 (5)°
  • V = 1715.9 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.28 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.934, T max = 0.955
  • 12530 measured reflections
  • 3748 independent reflections
  • 2528 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.118
  • S = 1.02
  • 3748 reflections
  • 282 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008913/hb5357sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008913/hb5357Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

The salts of aminobenzoic acids have been reported as medicines as well as precursor for in the field of pharmaceutics (Griss et al., 1984). These are also useful for autoxidation of the fats forming free radicals, hence, in comparison to sulfated metal oxides, these can be used for production of biodiesel (Pedanova et al., 1984; Refaat, 2010). The structure of title compound (I, Fig. 1) is being reported here.

In the title compound (I) benzene rings A (C1–C6) and B (C8—C13) are of course planar with maximum r. m. s. deviations of 0.0025 and 0.0034 Å from the mean squares planes. The dihedral angle between A/B is 7.91 (13)°. The carboxylate groups C (O1/C7/O2) and D (O3/C14/O4) are oriented at dihedral angles of 11.94 (38)° and 10.86 (41)° with benzene rings A and B respectively. The O-atoms of SO4-2 are disordered over two set of sites with occupancy ratio of 0.541 (13):0.459 (13). The molecules are stabilized due to intra as well as inter-molecular H-bondings and C–H···π interactions (Table 1, Fig. 2). The π–π interaction between the centroids CgA and CgB of benzene rings A and B respectively, also play a role in the stabilization of molecules. The centroid to centroid distance is 3.842 (2) Å.

Experimental

Ethanolic solution of anthranilic acid (0.02 M) was refluxed in the presence of conc. H2SO4 (0.01 M) for 30 min. The contents were kept at room temperature for 24 h. The crystalline material formed was washed with n-hexane, ethyl acetate and diethyl ether, respectively and dried. This material was dissolverd in ethanol and colorless prisms of (I) were obtainesd by slow evaporation at room temperature.

Refinement

Although all H-atoms were recognised from the difference fourier map but only coordinates of H-atoms of H2O were refined. The H-atoms were positioned geometrically (C—H = 0.93, O—H = 0.82, N—H = 0.89 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for NH3 and hydroxy H atoms, whereas x = 1.2 for all other H-atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines show the hydogen bonds.

Crystal data

2C7H8NO2+·SO42·H2OF(000) = 816
Mr = 390.36Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3752 reflections
a = 11.260 (5) Åθ = 2.0–27.1°
b = 10.542 (4) ŵ = 0.24 mm1
c = 15.358 (5) ÅT = 296 K
β = 109.737 (5)°Prisms, colorless
V = 1715.9 (12) Å30.28 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3748 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 7.50 pixels mm-1θmax = 27.1°, θmin = 2.0°
ω scansh = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −12→13
Tmin = 0.934, Tmax = 0.955l = −19→18
12530 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3168P] where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.45161 (14)0.45846 (15)0.61664 (12)0.0529 (6)
O20.24999 (14)0.41658 (17)0.58921 (13)0.0613 (7)
N10.15921 (15)0.19068 (17)0.51077 (12)0.0408 (6)
C10.36494 (17)0.28683 (19)0.51932 (13)0.0326 (6)
C20.27346 (18)0.19261 (19)0.48532 (14)0.0346 (6)
C30.2899 (2)0.0970 (2)0.43001 (16)0.0459 (8)
C40.3988 (2)0.0928 (2)0.40722 (16)0.0518 (8)
C50.4909 (2)0.1840 (2)0.44025 (15)0.0478 (8)
C60.47351 (18)0.2800 (2)0.49500 (14)0.0404 (7)
C70.34884 (18)0.3926 (2)0.57799 (14)0.0357 (6)
O30.20126 (14)0.69772 (16)0.43653 (12)0.0569 (6)
O40.01902 (14)0.62640 (15)0.44221 (12)0.0557 (6)
N2−0.09794 (14)0.43896 (16)0.32614 (12)0.0364 (6)
C80.12219 (17)0.51165 (19)0.35454 (13)0.0307 (6)
C90.02378 (18)0.42708 (18)0.31295 (13)0.0308 (6)
C100.0387 (2)0.3301 (2)0.25830 (15)0.0412 (7)
C110.1524 (2)0.3134 (2)0.24375 (16)0.0488 (8)
C120.2513 (2)0.3945 (2)0.28460 (15)0.0442 (7)
C130.23563 (18)0.4927 (2)0.33872 (14)0.0376 (6)
C140.10804 (19)0.6174 (2)0.41481 (14)0.0367 (7)
S10.82551 (5)0.10652 (5)0.37522 (4)0.0404 (2)
O5A0.7633 (7)0.2145 (4)0.3274 (4)0.0608 (16)0.541 (13)
O6A0.9595 (4)0.1055 (9)0.3666 (3)0.0576 (19)0.541 (13)
O7A0.8109 (9)0.1137 (12)0.4669 (9)0.053 (2)0.541 (13)
O8A0.7732 (9)−0.0123 (10)0.3402 (8)0.051 (2)0.541 (13)
O5B0.6994 (8)0.1600 (10)0.3072 (4)0.078 (3)0.459 (13)
O6B0.9227 (7)0.1737 (8)0.3650 (3)0.0500 (19)0.459 (13)
O7B0.8590 (9)0.1102 (15)0.4772 (10)0.049 (2)0.459 (13)
O8B0.8163 (12)−0.0309 (13)0.3482 (10)0.057 (3)0.459 (13)
O90.55554 (17)0.37630 (18)0.26338 (13)0.0535 (7)
H10.438340.512270.650810.0793*
H1A0.093560.167830.461960.0612*
H1B0.145690.267640.529340.0612*
H1C0.168990.135390.556460.0612*
H30.228140.035160.407850.0551*
H40.409910.028120.369490.0622*
H50.564380.180490.425450.0573*
H60.535430.341890.516400.0484*
H2A−0.154810.468290.274470.0546*
H2B−0.091090.492520.372370.0546*
H2C−0.122280.363320.339620.0546*
H3A0.188550.753760.469360.0854*
H10−0.028000.275070.230780.0495*
H110.161950.247530.206410.0586*
H120.328300.382970.275700.0531*
H130.302500.547900.365420.0451*
H9A0.576 (3)0.407 (3)0.2229 (19)0.0642*
H9B0.607 (2)0.313 (3)0.2786 (18)0.0642*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0400 (8)0.0520 (11)0.0720 (12)−0.0148 (8)0.0259 (8)−0.0236 (9)
O20.0370 (9)0.0661 (12)0.0872 (13)−0.0092 (8)0.0294 (9)−0.0292 (10)
N10.0334 (9)0.0396 (11)0.0503 (11)−0.0066 (8)0.0153 (8)0.0028 (9)
C10.0296 (10)0.0350 (12)0.0325 (10)−0.0007 (9)0.0097 (8)0.0052 (9)
C20.0318 (10)0.0353 (12)0.0369 (11)0.0001 (9)0.0117 (9)0.0064 (10)
C30.0463 (12)0.0388 (13)0.0513 (14)−0.0073 (11)0.0147 (11)−0.0023 (11)
C40.0571 (15)0.0498 (15)0.0506 (14)0.0039 (12)0.0209 (12)−0.0097 (12)
C50.0390 (12)0.0606 (16)0.0478 (13)0.0031 (12)0.0200 (10)−0.0015 (12)
C60.0316 (10)0.0486 (14)0.0401 (11)−0.0039 (10)0.0111 (9)−0.0012 (11)
C70.0306 (10)0.0365 (12)0.0403 (11)−0.0015 (9)0.0125 (9)0.0048 (10)
O30.0507 (9)0.0519 (10)0.0768 (13)−0.0231 (8)0.0328 (9)−0.0311 (9)
O40.0425 (9)0.0538 (10)0.0792 (12)−0.0122 (8)0.0314 (9)−0.0287 (9)
N20.0299 (9)0.0365 (10)0.0410 (10)−0.0058 (8)0.0095 (8)−0.0005 (8)
C80.0290 (9)0.0297 (11)0.0302 (10)−0.0005 (9)0.0059 (8)0.0015 (9)
C90.0304 (10)0.0279 (11)0.0315 (10)0.0023 (9)0.0070 (8)0.0038 (9)
C100.0428 (12)0.0328 (12)0.0439 (12)−0.0038 (10)0.0091 (10)−0.0067 (10)
C110.0585 (15)0.0395 (13)0.0495 (14)0.0089 (12)0.0196 (12)−0.0070 (11)
C120.0386 (12)0.0509 (14)0.0453 (12)0.0107 (11)0.0169 (10)0.0033 (12)
C130.0302 (10)0.0409 (12)0.0389 (11)−0.0025 (9)0.0082 (9)0.0007 (10)
C140.0322 (10)0.0341 (12)0.0425 (12)−0.0052 (9)0.0111 (9)−0.0047 (10)
S10.0493 (3)0.0288 (3)0.0455 (3)−0.0044 (3)0.0192 (3)−0.0041 (3)
O5A0.045 (3)0.033 (2)0.096 (3)0.004 (2)0.013 (2)0.020 (2)
O6A0.0306 (19)0.080 (5)0.061 (2)−0.002 (2)0.0141 (16)0.007 (2)
O7A0.075 (5)0.039 (3)0.058 (4)−0.011 (5)0.041 (5)−0.014 (3)
O8A0.065 (4)0.026 (4)0.048 (2)−0.013 (3)−0.001 (3)−0.006 (2)
O5B0.046 (4)0.084 (5)0.093 (4)0.018 (4)0.009 (3)0.019 (3)
O6B0.045 (3)0.046 (4)0.064 (3)−0.015 (3)0.025 (2)0.005 (2)
O7B0.061 (5)0.043 (3)0.047 (3)−0.006 (5)0.025 (5)−0.009 (2)
O8B0.099 (8)0.028 (3)0.057 (6)−0.003 (5)0.045 (6)−0.004 (3)
O90.0570 (11)0.0506 (11)0.0635 (12)−0.0020 (8)0.0343 (9)−0.0038 (9)

Geometric parameters (Å, °)

S1—O7A1.474 (13)N2—H2B0.8900
S1—O8A1.411 (11)C1—C21.399 (3)
S1—O5B1.557 (8)C1—C71.483 (3)
S1—O6B1.356 (8)C1—C61.396 (3)
S1—O7B1.483 (14)C2—C31.370 (3)
S1—O5A1.407 (5)C3—C41.385 (3)
S1—O6A1.559 (5)C4—C51.379 (3)
S1—O8B1.501 (14)C5—C61.371 (3)
O1—C71.308 (3)C3—H30.9300
O2—C71.209 (3)C4—H40.9300
O1—H10.8200C5—H50.9300
O3—C141.301 (3)C6—H60.9300
O4—C141.215 (3)C8—C131.393 (3)
O3—H3A0.8200C8—C141.492 (3)
O9—H9A0.80 (3)C8—C91.397 (3)
O9—H9B0.86 (3)C9—C101.369 (3)
N1—C21.466 (3)C10—C111.383 (3)
N1—H1A0.8900C11—C121.376 (3)
N1—H1C0.8900C12—C131.376 (3)
N1—H1B0.8900C10—H100.9300
N2—C91.457 (3)C11—H110.9300
N2—H2A0.8900C12—H120.9300
N2—H2C0.8900C13—H130.9300
O5B—S1—O7B123.3 (6)C4—C5—C6119.7 (2)
O5B—S1—O8B101.6 (7)C1—C6—C5121.4 (2)
O6B—S1—O7B100.4 (5)O1—C7—C1113.84 (18)
O6B—S1—O8B117.1 (6)O1—C7—O2122.7 (2)
O7B—S1—O8B106.7 (8)O2—C7—C1123.5 (2)
O5A—S1—O8A116.7 (5)C4—C3—H3120.00
O6A—S1—O7A120.3 (5)C2—C3—H3120.00
O6A—S1—O8A104.7 (6)C3—C4—H4120.00
O7A—S1—O8A104.1 (7)C5—C4—H4120.00
O5B—S1—O6B108.8 (5)C4—C5—H5120.00
O5A—S1—O6A106.7 (4)C6—C5—H5120.00
O5A—S1—O7A105.1 (6)C5—C6—H6119.00
C7—O1—H1109.00C1—C6—H6119.00
C14—O3—H3A109.00C9—C8—C13117.46 (18)
H9A—O9—H9B100 (3)C9—C8—C14121.75 (18)
C2—N1—H1B109.00C13—C8—C14120.79 (18)
H1B—N1—H1C109.00N2—C9—C10117.75 (18)
H1A—N1—H1B109.00N2—C9—C8121.31 (17)
C2—N1—H1A109.00C8—C9—C10121.0 (2)
H1A—N1—H1C109.00C9—C10—C11120.4 (2)
C2—N1—H1C109.00C10—C11—C12119.9 (2)
C9—N2—H2C109.00C11—C12—C13119.6 (2)
C9—N2—H2B109.00C8—C13—C12121.7 (2)
C9—N2—H2A109.00O4—C14—C8123.2 (2)
H2A—N2—H2C109.00O3—C14—C8113.54 (19)
H2A—N2—H2B109.00O3—C14—O4123.3 (2)
H2B—N2—H2C109.00C11—C10—H10120.00
C2—C1—C7122.35 (18)C9—C10—H10120.00
C2—C1—C6117.69 (18)C10—C11—H11120.00
C6—C1—C7119.96 (18)C12—C11—H11120.00
N1—C2—C3118.01 (19)C13—C12—H12120.00
N1—C2—C1120.82 (18)C11—C12—H12120.00
C1—C2—C3121.1 (2)C12—C13—H13119.00
C2—C3—C4119.8 (2)C8—C13—H13119.00
C3—C4—C5120.3 (2)
C6—C1—C2—N1177.63 (18)C13—C8—C9—N2179.56 (18)
C6—C1—C2—C30.0 (3)C13—C8—C9—C10−0.5 (3)
C7—C1—C2—N1−3.4 (3)C14—C8—C9—N20.4 (3)
C7—C1—C2—C3179.0 (2)C14—C8—C9—C10−179.60 (19)
C2—C1—C6—C5−0.5 (3)C9—C8—C13—C12−0.2 (3)
C7—C1—C6—C5−179.48 (19)C14—C8—C13—C12178.92 (19)
C2—C1—C7—O1168.59 (19)C9—C8—C14—O3−170.35 (18)
C2—C1—C7—O2−11.6 (3)C9—C8—C14—O410.8 (3)
C6—C1—C7—O1−12.4 (3)C13—C8—C14—O310.5 (3)
C6—C1—C7—O2167.4 (2)C13—C8—C14—O4−168.3 (2)
N1—C2—C3—C4−177.61 (19)N2—C9—C10—C11−179.52 (19)
C1—C2—C3—C40.1 (3)C8—C9—C10—C110.5 (3)
C2—C3—C4—C50.3 (3)C9—C10—C11—C120.2 (3)
C3—C4—C5—C6−0.8 (3)C10—C11—C12—C13−0.8 (3)
C4—C5—C6—C10.9 (3)C11—C12—C13—C80.9 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6Ai0.891.832.721 (6)174
N1—H1B···O20.891.992.708 (3)137
N1—H1B···O4ii0.892.333.041 (3)137
N1—H1C···O8Aiii0.891.982.860 (11)168
N2—H2A···O8Aiv0.891.832.698 (12)166
N2—H2B···O40.891.942.689 (3)140
N2—H2B···O2ii0.892.282.906 (3)128
N2—H2C···O5Ai0.892.002.839 (6)157
O1—H1···O9v0.821.752.557 (3)168
O3—H3A···O7Av0.821.702.512 (13)167
O9—H9A···O6Avi0.80 (3)2.46 (3)3.102 (8)138 (3)
O9—H9A···O8Avi0.80 (3)2.38 (4)3.115 (11)153 (3)
O9—H9B···O5A0.86 (3)1.96 (3)2.792 (7)161 (3)
C4—H4···Cg2vii0.932.753.600 (3)153

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+3/2, y+1/2, −z+1/2; (vii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5357).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Griss, G., Sauter, R., Grell, W., Hurnaus, R., Eisele, B. & Kahling, J. (1984). Eur. Patent No. EP 0 063 826.
  • Pedanova, N. V., Shmulovich, V. G., Kalinina, I. G. & Gol’denberg, V. I. (1984). Pharm. Chem. J.18, 626–629.
  • Refaat, A. A. (2010). Int. J. Environ. Sci. Technol.7, 183–213.
  • Rogers, E. F. & Clark, R. L. (1973). US Patent No. 3 758 561.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography