PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o772.
Published online 2010 March 6. doi:  10.1107/S1600536810007932
PMCID: PMC2983957

3-(2,4-Dichloro­phen­yl)-5-methyl-1,2,4-oxadiazole

Abstract

In the title compound, C9H6Cl2N2O, the dihedral angle between the oxadiazole and benzene rings is 1.7 (2)°. In the crystal, the mol­ecules are linked into chains along the b axis by short inter­molecular Cl(...)O contacts [3.019 (3) Å].

Related literature

For general background and the biological activity of oxa­diazole compounds, see: Andersen et al. (1994 [triangle]); Clitherow et al. (1996 [triangle]); Showell et al. (1991 [triangle]); Swain et al. (1991 [triangle]); Watjen et al. (1989 [triangle]). For a related structure, see: Wang et al. (2006 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o772-scheme1.jpg

Experimental

Crystal data

  • C9H6Cl2N2O
  • M r = 229.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o772-efi1.jpg
  • a = 3.8252 (7) Å
  • b = 21.678 (4) Å
  • c = 11.0833 (19) Å
  • β = 92.421 (4)°
  • V = 918.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.67 mm−1
  • T = 100 K
  • 0.28 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.833, T max = 0.929
  • 7920 measured reflections
  • 2076 independent reflections
  • 1709 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.155
  • S = 1.20
  • 2076 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007932/ci5045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007932/ci5045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and MMR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). AMI is grateful to Professor Sandeep Sancheti, Director, National Institute of Technology-Karnataka, India, for providing research facilities and encouragement.

supplementary crystallographic information

Comment

Heterocyclic compounds are important in recent years due to pharmacological activities. Nitrogen, oxygen containing five- and six-membered heterocyclic compounds have enormous significance in the field of medicinal chemistry. Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994), anti-cancer (Showell et al., 1991), anti-HIV (Watjen et al., 1989), anti-diabetic and anti-microbial (Swain et al., 1991) properties. The results of biological studies showed that oxadiazole derivatives are molecules with maximum anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

Bond lengths and angles are normal (Wang et al., 2006). The mean plane of the oxadiazole ring (C1/C2/N1/N2/O1) is almost coplanar with the mean plane of the C3–C8 benzene ring (Fig. 1), with a dihedral angle of 1.7 (2)°.

The molecules are linked by Cl2···O1(-x, 1/2+y, 3/2-z) short contacts [3.019 (3) Å;] to form chains along the b axis (Fig.2).

Experimental

The title compound was prepared by heating a solution of 2,4-dichloro-N'-hydroxy-benzamidine (1 g, 0.0042 mol) and acetyl chloride (0.38 g, 0.004 mol) in pyridine (30 ml) at 387 K for 1.5 h and the contents were concentrated under vacuum. Further purification was done by column chromatography. The solid obtained was recrystallized using dichloromethane (yield: 1.0 g (76%); m.p. 371-372 K).

Refinement

H atoms were placed in calculated positions [C–H = 0.93–0.96 Å] and refined as riding with Uiso(H) = 1.2eq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound, showing chains along the b axis.

Crystal data

C9H6Cl2N2OF(000) = 464
Mr = 229.06Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3719 reflections
a = 3.8252 (7) Åθ = 2.6–31.1°
b = 21.678 (4) ŵ = 0.67 mm1
c = 11.0833 (19) ÅT = 100 K
β = 92.421 (4)°Block, colourless
V = 918.3 (3) Å30.28 × 0.17 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2076 independent reflections
Radiation source: fine-focus sealed tube1709 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −4→4
Tmin = 0.833, Tmax = 0.929k = −26→28
7920 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0428P)2 + 4.0517P] where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.2530 (2)0.40084 (4)0.92173 (8)0.0163 (2)
Cl20.1238 (3)0.63730 (4)0.78985 (9)0.0185 (3)
O1−0.2054 (8)0.27327 (13)0.6574 (3)0.0220 (7)
N1−0.3467 (8)0.35961 (15)0.5636 (3)0.0158 (7)
N2−0.0709 (10)0.32171 (16)0.7322 (3)0.0194 (7)
C1−0.3637 (11)0.30045 (18)0.5605 (4)0.0173 (8)
C2−0.1651 (10)0.37119 (18)0.6715 (3)0.0140 (8)
C3−0.0869 (9)0.43519 (17)0.7088 (3)0.0124 (7)
C40.0928 (10)0.45392 (18)0.8165 (3)0.0137 (8)
C50.1523 (9)0.51553 (18)0.8418 (4)0.0136 (7)
H5A0.26840.52720.91360.016*
C60.0369 (10)0.56000 (17)0.7588 (3)0.0127 (7)
C7−0.1429 (10)0.54398 (18)0.6533 (4)0.0151 (8)
H7A−0.22400.57400.59900.018*
C8−0.1993 (10)0.48214 (18)0.6303 (4)0.0153 (8)
H8A−0.31860.47120.55860.018*
C9−0.5226 (12)0.2592 (2)0.4666 (4)0.0237 (9)
H9A−0.64280.28350.40550.036*
H9B−0.68560.23190.50280.036*
H9C−0.34220.23540.43080.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0168 (5)0.0182 (5)0.0138 (5)0.0028 (3)−0.0011 (3)0.0023 (4)
Cl20.0197 (5)0.0140 (4)0.0219 (5)−0.0024 (3)0.0025 (4)−0.0017 (4)
O10.0309 (17)0.0139 (14)0.0213 (15)−0.0017 (12)0.0017 (12)−0.0018 (12)
N10.0130 (15)0.0175 (16)0.0172 (17)0.0000 (12)0.0018 (12)−0.0022 (13)
N20.0257 (19)0.0147 (16)0.0178 (18)−0.0002 (14)0.0018 (14)−0.0032 (13)
C10.0148 (19)0.0194 (19)0.018 (2)0.0000 (15)0.0051 (15)−0.0007 (15)
C20.0103 (17)0.0185 (19)0.0138 (18)0.0022 (14)0.0081 (14)0.0000 (14)
C30.0078 (17)0.0152 (18)0.0150 (18)0.0009 (13)0.0080 (14)−0.0011 (14)
C40.0126 (18)0.0171 (19)0.0119 (19)0.0043 (13)0.0054 (14)0.0016 (14)
C50.0070 (16)0.0208 (19)0.0132 (18)0.0017 (14)0.0022 (13)−0.0021 (15)
C60.0106 (17)0.0134 (17)0.0144 (18)−0.0008 (13)0.0033 (13)−0.0027 (14)
C70.0106 (18)0.0174 (19)0.0177 (19)0.0033 (14)0.0056 (14)0.0033 (15)
C80.0114 (17)0.0181 (19)0.017 (2)0.0005 (14)0.0055 (14)0.0004 (15)
C90.025 (2)0.018 (2)0.029 (2)−0.0030 (16)0.0041 (18)−0.0072 (17)

Geometric parameters (Å, °)

Cl1—C41.732 (4)C4—C51.382 (5)
Cl2—C61.740 (4)C5—C61.391 (5)
O1—C11.346 (5)C5—H5A0.93
O1—N21.421 (4)C6—C71.376 (5)
N1—C11.285 (5)C7—C81.380 (6)
N1—C21.381 (5)C7—H7A0.93
N2—C21.308 (5)C8—H8A0.93
C1—C91.483 (6)C9—H9A0.96
C2—C31.475 (5)C9—H9B0.96
C3—C81.396 (5)C9—H9C0.96
C3—C41.411 (5)
C1—O1—N2106.4 (3)C6—C5—H5A120.3
C1—N1—C2103.2 (3)C7—C6—C5121.3 (4)
C2—N2—O1102.8 (3)C7—C6—Cl2119.7 (3)
N1—C1—O1113.3 (4)C5—C6—Cl2119.0 (3)
N1—C1—C9129.8 (4)C6—C7—C8118.1 (4)
O1—C1—C9116.9 (4)C6—C7—H7A121.0
N2—C2—N1114.4 (4)C8—C7—H7A121.0
N2—C2—C3125.4 (4)C7—C8—C3123.5 (4)
N1—C2—C3120.2 (3)C7—C8—H8A118.3
C8—C3—C4116.4 (3)C3—C8—H8A118.3
C8—C3—C2117.2 (3)C1—C9—H9A109.5
C4—C3—C2126.4 (3)C1—C9—H9B109.5
C5—C4—C3121.3 (3)H9A—C9—H9B109.5
C5—C4—Cl1117.1 (3)C1—C9—H9C109.5
C3—C4—Cl1121.6 (3)H9A—C9—H9C109.5
C4—C5—C6119.4 (3)H9B—C9—H9C109.5
C4—C5—H5A120.3
C1—O1—N2—C20.1 (4)C8—C3—C4—C50.0 (5)
C2—N1—C1—O1−0.4 (5)C2—C3—C4—C5179.8 (3)
C2—N1—C1—C9−179.1 (4)C8—C3—C4—Cl1−179.1 (3)
N2—O1—C1—N10.2 (5)C2—C3—C4—Cl10.6 (5)
N2—O1—C1—C9179.1 (3)C3—C4—C5—C6−0.8 (6)
O1—N2—C2—N1−0.4 (4)Cl1—C4—C5—C6178.4 (3)
O1—N2—C2—C3−179.3 (3)C4—C5—C6—C71.6 (6)
C1—N1—C2—N20.5 (5)C4—C5—C6—Cl2−178.3 (3)
C1—N1—C2—C3179.5 (3)C5—C6—C7—C8−1.5 (6)
N2—C2—C3—C8178.0 (4)Cl2—C6—C7—C8178.4 (3)
N1—C2—C3—C8−0.8 (5)C6—C7—C8—C30.7 (6)
N2—C2—C3—C4−1.8 (6)C4—C3—C8—C70.1 (6)
N1—C2—C3—C4179.4 (4)C2—C3—C8—C7−179.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5045).

References

  • Andersen, K. E., Jørgensen, A. S. & Bræstrup, C. (1994). Eur. J. Med. Chem.29, 393-399.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett.6, 833–838.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem.34, 1086–1094. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Swain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem.34, 140–151. [PubMed]
  • Wang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715–o4716.
  • Watjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wang, E. & Springer, J. P. (1989). J. Med. Chem.32, 282–2291. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography