PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m356.
Published online 2010 March 3. doi:  10.1107/S1600536810007439
PMCID: PMC2983955

Di-tert-butyl­bis(N-isopropyl-N-methyl­dithio­carbamato-κ2 S,S′)tin(IV)

Abstract

The dithio­carbamate anions in the title compound, [Sn(C4H9)2(C5H10NS2)2], chelate to the SnIV atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol­ecule lies across a twofold rotation axis. The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.82 (1):0.18 (1).

Related literature

For the crystal structure of di(tert-but­yl)bis­(N,N-dimethyl­dithio­carbamato)tin(IV), see: Kim et al. (1987 [triangle]). For a discussion of the geometry of tin in diorganotin bis­chelates, see: Ng et al. (1987 [triangle]). For the treatment of non-merohedral twinning, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m356-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2(C5H10NS2)2]
  • M r = 529.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m356-efi1.jpg
  • a = 11.2934 (11) Å
  • b = 7.0175 (7) Å
  • c = 15.6894 (15) Å
  • β = 95.016 (1)°
  • V = 1238.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.37 mm−1
  • T = 293 K
  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.610, T max = 0.875
  • 7346 measured reflections
  • 2838 independent reflections
  • 2199 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.186
  • S = 1.09
  • 2838 reflections
  • 121 parameters
  • H-atom parameters constrained
  • Δρmax = 1.76 e Å−3
  • Δρmin = −1.58 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007439/ci5041sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007439/ci5041Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Di-t-butyltin dichloride (10 mmol), isopropylmethylamine (10 mmol) and carbon disulfide (10 mmol) were reacted in ethanol (50 ml) at 277 K to produce a white solid. The mixture was stirred for 1 h. The solid was collected and recrystallized from ethanol.

Refinement

H atoms were placed in calculated positions (C–H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5Ueq(C). The structure is a non-merohedral twin. The diffraction data were separated into two components by using PLATON (Spek, 2009). The final difference Fourier map had a peak near S2 and a hole near Sn1. The twin matrix is (0.293 0 0.707, 0 -1 0, 1.293 0 -0.293).

Figures

Fig. 1.
Displacement ellipsoid plot (Barbour, 2001) of [Sn(C6H5)2(C5H11NS2)2] at 50% probability level. H atoms are drawn as spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry operation (3/2 - x, y, 3/2 - z).

Crystal data

[Sn(C4H9)2(C5H10NS2)2]F(000) = 548
Mr = 529.43Dx = 1.420 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 4020 reflections
a = 11.2934 (11) Åθ = 2.6–28.1°
b = 7.0175 (7) ŵ = 1.37 mm1
c = 15.6894 (15) ÅT = 293 K
β = 95.016 (1)°Block, colourless
V = 1238.6 (2) Å30.40 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer2838 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
graphiteRint = 0.065
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.610, Tmax = 0.875k = −8→9
7346 measured reflectionsl = −11→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0968P)2 + 1.7978P] where P = (Fo2 + 2Fc2)/3
2838 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = −1.58 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.75000.42189 (9)0.75000.0369 (2)
S10.77107 (19)0.1454 (3)0.64749 (11)0.0514 (5)
S20.82366 (17)0.5223 (3)0.57705 (11)0.0469 (4)
N10.8073 (5)0.2052 (8)0.4857 (3)0.0402 (12)
C10.5675 (6)0.5241 (11)0.7062 (4)0.0426 (15)
C20.4811 (7)0.3967 (12)0.7504 (5)0.059 (2)
H2A0.40210.44740.74090.089*
H2B0.50430.39250.81070.089*
H2C0.48280.27020.72710.089*
C30.5406 (8)0.5079 (17)0.6112 (5)0.070 (2)
H3A0.45810.53510.59630.105*
H3B0.55800.38090.59320.105*
H3C0.58860.59720.58310.105*
C40.5556 (7)0.7310 (12)0.7355 (6)0.060 (2)
H4A0.47890.77930.71480.090*
H4B0.61640.80710.71310.090*
H4C0.56420.73620.79680.090*
C50.8030 (5)0.2889 (9)0.5620 (4)0.0373 (13)
C60.8255 (8)0.3238 (13)0.4121 (5)0.059 (2)
H6A0.77720.43610.41340.089*
H6B0.80380.25390.36050.089*
H6C0.90770.35980.41380.089*
C70.7887 (7)0.0018 (11)0.4715 (5)0.0501 (17)
H7A0.8045−0.06200.52690.060*
C80.6609 (11)−0.0364 (16)0.4406 (10)0.102 (4)
H8A0.61020.00900.48220.153*
H8B0.6494−0.17100.43250.153*
H8C0.64180.02830.38720.153*
C90.8748 (12)−0.0792 (14)0.4117 (7)0.097 (4)
H9A0.9505−0.01740.42220.145*
H9B0.8442−0.05790.35340.145*
H9C0.8841−0.21360.42160.145*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0481 (4)0.0382 (4)0.0266 (3)0.0000.0163 (2)0.000
S10.0883 (13)0.0388 (9)0.0311 (8)−0.0034 (9)0.0284 (8)0.0010 (7)
S20.0678 (11)0.0352 (9)0.0400 (9)−0.0041 (8)0.0169 (8)0.0007 (7)
N10.053 (3)0.040 (3)0.029 (3)0.000 (2)0.017 (2)−0.001 (2)
C10.041 (3)0.051 (4)0.038 (3)−0.004 (3)0.010 (3)0.004 (3)
C20.053 (4)0.076 (6)0.051 (4)−0.014 (4)0.015 (3)0.001 (4)
C30.059 (5)0.110 (8)0.041 (4)0.007 (5)0.003 (4)0.000 (5)
C40.064 (5)0.052 (5)0.064 (5)0.009 (4)0.005 (4)0.004 (4)
C50.046 (3)0.038 (3)0.030 (3)0.004 (3)0.015 (2)0.005 (3)
C60.087 (5)0.060 (5)0.033 (3)−0.007 (4)0.020 (4)0.006 (3)
C70.080 (5)0.037 (4)0.035 (3)−0.001 (4)0.014 (3)−0.003 (3)
C80.095 (8)0.071 (7)0.134 (12)−0.026 (6)−0.018 (8)−0.007 (7)
C90.159 (12)0.064 (7)0.075 (7)0.013 (6)0.062 (7)−0.014 (5)

Geometric parameters (Å, °)

Sn1—C1i2.233 (7)C3—H3B0.96
Sn1—C12.233 (7)C3—H3C0.96
Sn1—S12.5444 (18)C4—H4A0.96
Sn1—S1i2.5444 (18)C4—H4B0.96
Sn1—S2i2.9911 (17)C4—H4C0.96
Sn1—S22.9911 (17)C6—H6A0.96
S1—C51.739 (6)C6—H6B0.96
S2—C51.669 (7)C6—H6C0.96
N1—C51.338 (8)C7—C81.506 (13)
N1—C61.453 (9)C7—C91.520 (12)
N1—C71.457 (10)C7—H7A0.98
C1—C31.500 (10)C8—H8A0.96
C1—C21.533 (10)C8—H8B0.96
C1—C41.532 (11)C8—H8C0.96
C2—H2A0.96C9—H9A0.96
C2—H2B0.96C9—H9B0.96
C2—H2C0.96C9—H9C0.96
C3—H3A0.96
C1i—Sn1—C1142.5 (4)H3A—C3—H3C109.5
C1i—Sn1—S1107.74 (18)H3B—C3—H3C109.5
C1—Sn1—S1100.7 (2)C1—C4—H4A109.5
C1i—Sn1—S1i100.7 (2)C1—C4—H4B109.5
C1—Sn1—S1i107.74 (19)H4A—C4—H4B109.5
S1—Sn1—S1i80.64 (8)C1—C4—H4C109.5
S1—Sn1—S263.73 (6)H4A—C4—H4C109.5
S1—Sn1—S2i143.31 (6)H4B—C4—H4C109.5
C1—Sn1—S288.14 (17)N1—C5—S2122.8 (5)
C1i—Sn1—S2i88.14 (17)N1—C5—S1117.5 (5)
S1i—Sn1—S2143.31 (6)S2—C5—S1119.7 (4)
S2i—Sn1—S2152.75 (6)N1—C6—H6A109.5
C1—Sn1—S2i83.17 (17)N1—C6—H6B109.5
C1i—Sn1—S283.17 (17)H6A—C6—H6B109.5
S1i—Sn1—S2i63.73 (6)N1—C6—H6C109.5
C5—S1—Sn194.8 (2)H6A—C6—H6C109.5
C5—N1—C6118.6 (6)H6B—C6—H6C109.5
C5—N1—C7123.4 (5)N1—C7—C8110.2 (7)
C6—N1—C7117.9 (6)N1—C7—C9111.7 (7)
C3—C1—C2108.9 (7)C8—C7—C9112.4 (9)
C3—C1—C4110.8 (7)N1—C7—H7A107.4
C2—C1—C4110.0 (6)C8—C7—H7A107.4
C3—C1—Sn1112.5 (5)C9—C7—H7A107.4
C2—C1—Sn1106.3 (5)C7—C8—H8A109.5
C4—C1—Sn1108.3 (5)C7—C8—H8B109.5
C1—C2—H2A109.5H8A—C8—H8B109.5
C1—C2—H2B109.5C7—C8—H8C109.5
H2A—C2—H2B109.5H8A—C8—H8C109.5
C1—C2—H2C109.5H8B—C8—H8C109.5
H2A—C2—H2C109.5C7—C9—H9A109.5
H2B—C2—H2C109.5C7—C9—H9B109.5
C1—C3—H3A109.5H9A—C9—H9B109.5
C1—C3—H3B109.5C7—C9—H9C109.5
H3A—C3—H3B109.5H9A—C9—H9C109.5
C1—C3—H3C109.5H9B—C9—H9C109.5
C1i—Sn1—S1—C5−76.5 (3)S1i—Sn1—C1—C4117.8 (5)
C1—Sn1—S1—C578.8 (3)C6—N1—C5—S2−2.8 (9)
S1i—Sn1—S1—C5−174.8 (2)C7—N1—C5—S2−179.6 (5)
C1i—Sn1—C1—C3103.1 (6)C6—N1—C5—S1175.8 (5)
S1—Sn1—C1—C3−35.9 (6)C7—N1—C5—S1−1.0 (8)
S1i—Sn1—C1—C3−119.4 (6)Sn1—S1—C5—N1−171.6 (5)
C1i—Sn1—C1—C2−137.8 (5)Sn1—S1—C5—S27.0 (4)
S1—Sn1—C1—C283.1 (5)C5—N1—C7—C895.0 (9)
S1i—Sn1—C1—C2−0.3 (5)C6—N1—C7—C8−81.9 (9)
C1i—Sn1—C1—C4−19.7 (4)C5—N1—C7—C9−139.4 (8)
S1—Sn1—C1—C4−158.7 (5)C6—N1—C7—C943.8 (10)

Symmetry codes: (i) −x+3/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5041).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317–2319.
  • Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem.334, 295–305.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography