PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o873.
Published online 2010 March 20. doi:  10.1107/S1600536810009463
PMCID: PMC2983951

(8-Bromo-2,7-dimeth­oxy-1-naphth­yl)(4-chloro­phenyl)methanone

Abstract

In the title compound, C19H14BrClO3, the naphthalene ring system and the benzene ring make a dihedral angle of 77.36 (10)°. The conformation around the central C=O group is such that the C=O bond vector forms a larger angle to the plane of the naphthalene ring system than to the plane of the benzene ring, viz. 75.73 (15)° versus 2.33 (17)°. In the crystal structure, a π–π inter­action is formed between naphthalene ring systems, with a centroid–centroid distance of 3.8363 (14) Å and a lateral offset of 1.606 Å. Inter­molecular C—H(...)Br and C—H(...)O hydrogen bonds and a C—H(...)π contact are present in the crystal structure.

Related literature

For the structures of closely related compounds, see: Mitsui et al. (2009 [triangle], 2010 [triangle]); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008 [triangle]); Mitsui, Nakaema, Noguchi & Yonezawa (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o873-scheme1.jpg

Experimental

Crystal data

  • C19H14BrClO3
  • M r = 405.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o873-efi1.jpg
  • a = 15.0867 (3) Å
  • b = 8.72313 (16) Å
  • c = 13.5894 (3) Å
  • β = 108.536 (1)°
  • V = 1695.64 (6) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.88 mm−1
  • T = 193 K
  • 0.50 × 0.40 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.160, T max = 0.614
  • 26838 measured reflections
  • 3092 independent reflections
  • 2845 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.086
  • S = 1.07
  • 3092 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009463/is2530sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009463/is2530Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008), (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009) and 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui et al., 2010). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 1-bromo-8-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene, (I). The title compound was prepared by methylation of 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene with dimethyl sulfonate.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the dihedral angle between the benzene ring (C12–C17) and the naphthalene ring (C1–C10) is 77.36 (10)°. The C═O bond vector and the least-squares plane of the benzene ring are almost coplanar [2.33 (17)°]. By contrast, the C═O bond vector and the least-squares plane of the naphthalene ring are largely twisted [75.73 (15)°]. The conformation of these groups resembles to that of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene.

In the crystal structure, all H atoms belonging the methoxy group in the 7-position of naphthalene ring, interact with adjacent molecule constructing intermolecular C—H···Br, C—H···O hydrogen bonds and C—H···π contact, respectively (Table 1). H19A and Br1 interact with each other [H19A···Br1 = 2.92 Å] along the b axis (Fig. 2). H19C interacts with the carbonyl oxygen [H19C···O1 = 2.53 Å] along the b axis (Fig. 3). The carbonyl oxygen also interacts with naphthalene ring hydrogen [O1···H4 = 2.49 Å] along the c axis (Figs. 2 and 3). The methoxy group acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1/C2/C3/C4/C5/C10 ring (with centroid Cg1)] of an adjacent molecule acts as an acceptor, viz. C19—H19B···π (Fig. 4 and Table 1). Additionally, the π systems of the C5–C10 ring (with centroid Cg2) in the naphthalene group are exactly parallel. The perpendicular distance between these aromatic rings is 3.4840 (10) Å. The centroid–centroid distance between the parallel aromatic rings is 3.8363 (14) Å, and the lateral offsets are 1.606 Å, indicating the presence of a π–π interaction (Fig. 4).

Experimental

1-Bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (1.56 g, 4.0 mmol) was dissolved in acetone (5.0 ml) and aqueous 0.4 M NaOH (5.0 ml). Then, dimethyl sulfate (0.78 ml, 8.0 mmol) was added and the reaction mixture was stirred for 6 h at room temperature. The mixture was concentrated by evaporation and poured into a mixture of H2O (10 ml) and CHCl3 (10 ml), and the aqueous layer was extracted with CHCl3 (3 × 10 ml). The combined organic layers were washed with brine (3 × 30 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from CHCl3/hexane to give the title compound as colorless platelets (m.p. 447.0–447.5 K, yield 1.43 g, 88%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 7.88–7.79 (m, 4H), 7.37 (d, 2H), 7.21–7.15 (m, 2H), 3.95 (s, 3H), 3.75 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 196.5, 157.2, 155.7, 138.7, 138.6, 132.2, 131.9, 130.4, 130.1, 128.7, 126.3, 122.5, 111.8, 111.6, 104.9, 57.0, 56.8; IR (KBr): 1665, 1613, 1506, 1273, 1043, 827; HRMS (m/z): [M + H]+ calcd for C19H15BrClO3, 404.9893 found, 404.9862. Anal. Calcd for C19H14BrClO3: C 56.25, H 3.48. Found: C 56.48, H 3.42.

Refinement

All the H atoms could be located in a difference Fourier map. The C-bound H atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of compound (I), showing 50% probability displacement ellipsoids.
Fig. 2.
Partial packing diagram of compound (I), viewed down the a axis. Intermolecular C—H···Br and C—H···O hydrogen bonds are shown as dashed lines.
Fig. 3.
Partial packing diagram of compound (I), viewed down the a axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines.
Fig. 4.
The arrangement of the molecules, viewed in an oblique direction. Intermolecular C—H···π and π–π interactions are shown as dashed lines.

Crystal data

C19H14BrClO3F(000) = 816
Mr = 405.66Dx = 1.589 Mg m3
Monoclinic, P21/cMelting point = 447.0–447.5 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 15.0867 (3) ÅCell parameters from 25305 reflections
b = 8.72313 (16) Åθ = 3.1–68.2°
c = 13.5894 (3) ŵ = 4.88 mm1
β = 108.536 (1)°T = 193 K
V = 1695.64 (6) Å3Platelet, colorless
Z = 40.50 × 0.40 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3092 independent reflections
Radiation source: rotating anode2845 reflections with I > 2σ(I)
graphiteRint = 0.071
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.1°
ω scansh = −18→18
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −10→10
Tmin = 0.160, Tmax = 0.614l = −16→15
26838 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086w = 1/[σ2(Fo2) + (0.036P)2 + 0.9139P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3092 reflectionsΔρmax = 0.45 e Å3
220 parametersΔρmin = −0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.147755 (18)0.22446 (3)0.41929 (2)0.03662 (13)
Cl10.50868 (6)0.13053 (10)0.23975 (8)0.0709 (3)
O10.14525 (10)0.53370 (19)0.27564 (12)0.0318 (4)
O20.32367 (14)0.7494 (2)0.39704 (16)0.0411 (5)
O30.03824 (12)0.2074 (2)0.55691 (15)0.0372 (4)
C10.23238 (14)0.5731 (2)0.44962 (17)0.0248 (5)
C20.27916 (16)0.7120 (3)0.4674 (2)0.0307 (5)
C30.27780 (19)0.8080 (3)0.5498 (2)0.0401 (6)
H30.31160.90170.56190.048*
C40.2273 (2)0.7647 (3)0.6119 (2)0.0417 (6)
H40.22510.83090.66660.050*
C50.17794 (16)0.6246 (3)0.59797 (19)0.0313 (5)
C60.12237 (18)0.5854 (3)0.66060 (19)0.0375 (6)
H60.11920.65440.71350.045*
C70.07338 (16)0.4519 (3)0.64755 (19)0.0339 (6)
H70.03460.43040.68890.041*
C80.08055 (15)0.3461 (3)0.57235 (18)0.0294 (5)
C90.13469 (15)0.3817 (3)0.51018 (17)0.0253 (5)
C100.18258 (14)0.5234 (2)0.51737 (16)0.0243 (5)
C110.21803 (15)0.5047 (2)0.34374 (17)0.0251 (5)
C120.29276 (15)0.4137 (2)0.32081 (18)0.0264 (5)
C130.37831 (16)0.3841 (3)0.39620 (19)0.0325 (5)
H130.39070.42350.46440.039*
C140.44561 (17)0.2970 (3)0.3718 (2)0.0406 (6)
H140.50430.27750.42280.049*
C150.42620 (18)0.2396 (3)0.2732 (2)0.0402 (7)
C160.34149 (19)0.2680 (3)0.1967 (2)0.0397 (6)
H160.32940.22790.12870.048*
C170.27547 (16)0.3553 (3)0.22136 (19)0.0321 (5)
H170.21740.37580.16970.039*
C180.3499 (2)0.9051 (3)0.3903 (3)0.0476 (7)
H18A0.37160.91760.33000.057*
H18B0.40040.93290.45350.057*
H18C0.29590.97180.38270.057*
C19−0.01877 (17)0.1655 (3)0.6194 (2)0.0425 (7)
H19A−0.04660.06450.59780.051*
H19B−0.06850.24160.61040.051*
H19C0.01990.16180.69250.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.05100 (19)0.02421 (18)0.0425 (2)−0.00965 (10)0.02598 (14)−0.00643 (10)
Cl10.0531 (4)0.0667 (5)0.1010 (7)0.0177 (4)0.0360 (4)−0.0234 (5)
O10.0301 (8)0.0363 (9)0.0288 (9)0.0025 (7)0.0094 (7)0.0005 (7)
O20.0518 (11)0.0298 (9)0.0537 (13)−0.0136 (8)0.0336 (10)−0.0043 (8)
O30.0405 (9)0.0338 (10)0.0443 (11)−0.0086 (7)0.0236 (8)0.0042 (8)
C10.0244 (10)0.0233 (11)0.0284 (12)0.0000 (8)0.0108 (9)−0.0009 (9)
C20.0310 (11)0.0301 (13)0.0351 (14)−0.0043 (9)0.0163 (10)−0.0003 (10)
C30.0476 (14)0.0312 (13)0.0453 (16)−0.0136 (11)0.0201 (12)−0.0121 (12)
C40.0554 (16)0.0370 (14)0.0369 (15)−0.0104 (12)0.0207 (13)−0.0157 (12)
C50.0358 (12)0.0307 (12)0.0296 (13)−0.0025 (10)0.0136 (10)−0.0030 (10)
C60.0471 (14)0.0396 (14)0.0305 (14)0.0011 (11)0.0191 (11)−0.0049 (11)
C70.0357 (12)0.0410 (14)0.0314 (13)0.0029 (10)0.0194 (10)0.0055 (11)
C80.0280 (10)0.0283 (12)0.0322 (13)0.0015 (9)0.0099 (9)0.0075 (10)
C90.0287 (10)0.0252 (11)0.0233 (11)0.0003 (9)0.0100 (9)0.0009 (9)
C100.0248 (10)0.0241 (11)0.0236 (11)0.0006 (8)0.0069 (8)0.0017 (9)
C110.0297 (11)0.0209 (11)0.0276 (12)−0.0044 (8)0.0131 (9)0.0029 (9)
C120.0293 (11)0.0219 (11)0.0324 (13)−0.0019 (8)0.0160 (9)0.0009 (9)
C130.0356 (12)0.0310 (12)0.0316 (13)−0.0006 (10)0.0116 (10)0.0012 (10)
C140.0308 (12)0.0351 (14)0.0541 (17)0.0055 (10)0.0110 (12)0.0050 (13)
C150.0366 (13)0.0287 (13)0.062 (2)0.0007 (10)0.0258 (13)−0.0069 (12)
C160.0423 (14)0.0349 (14)0.0468 (17)−0.0038 (11)0.0212 (13)−0.0119 (12)
C170.0338 (11)0.0291 (12)0.0357 (14)−0.0050 (9)0.0142 (10)−0.0047 (10)
C180.0543 (16)0.0321 (14)0.0622 (19)−0.0114 (12)0.0269 (14)0.0052 (13)
C190.0357 (13)0.0438 (16)0.0538 (17)−0.0021 (11)0.0223 (12)0.0171 (14)

Geometric parameters (Å, °)

Br1—C91.898 (2)C7—H70.9500
Cl1—C151.738 (3)C8—C91.384 (3)
O1—C111.217 (3)C9—C101.419 (3)
O2—C21.371 (3)C11—C121.490 (3)
O2—C181.426 (3)C12—C171.389 (3)
O3—C81.353 (3)C12—C131.393 (3)
O3—C191.435 (3)C13—C141.390 (4)
C1—C21.385 (3)C13—H130.9500
C1—C101.428 (3)C14—C151.372 (4)
C1—C111.508 (3)C14—H140.9500
C2—C31.403 (4)C15—C161.389 (4)
C3—C41.359 (4)C16—C171.377 (3)
C3—H30.9500C16—H160.9500
C4—C51.412 (3)C17—H170.9500
C4—H40.9500C18—H18A0.9800
C5—C61.414 (3)C18—H18B0.9800
C5—C101.426 (3)C18—H18C0.9800
C6—C71.360 (4)C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C7—C81.406 (4)C19—H19C0.9800
C2—O2—C18118.6 (2)O1—C11—C1117.7 (2)
C8—O3—C19118.6 (2)C12—C11—C1121.43 (18)
C2—C1—C10119.8 (2)C17—C12—C13119.4 (2)
C2—C1—C11115.1 (2)C17—C12—C11118.6 (2)
C10—C1—C11123.34 (18)C13—C12—C11122.0 (2)
O2—C2—C1114.9 (2)C14—C13—C12120.2 (2)
O2—C2—C3123.3 (2)C14—C13—H13119.9
C1—C2—C3121.7 (2)C12—C13—H13119.9
C4—C3—C2118.9 (2)C15—C14—C13119.1 (2)
C4—C3—H3120.5C15—C14—H14120.4
C2—C3—H3120.5C13—C14—H14120.4
C3—C4—C5122.2 (3)C14—C15—C16121.7 (2)
C3—C4—H4118.9C14—C15—Cl1120.5 (2)
C5—C4—H4118.9C16—C15—Cl1117.8 (2)
C4—C5—C6121.1 (2)C17—C16—C15118.8 (3)
C4—C5—C10119.1 (2)C17—C16—H16120.6
C6—C5—C10119.7 (2)C15—C16—H16120.6
C7—C6—C5122.0 (2)C16—C17—C12120.8 (2)
C7—C6—H6119.0C16—C17—H17119.6
C5—C6—H6119.0C12—C17—H17119.6
C6—C7—C8119.5 (2)O2—C18—H18A109.5
C6—C7—H7120.3O2—C18—H18B109.5
C8—C7—H7120.3H18A—C18—H18B109.5
O3—C8—C9116.5 (2)O2—C18—H18C109.5
O3—C8—C7123.9 (2)H18A—C18—H18C109.5
C9—C8—C7119.5 (2)H18B—C18—H18C109.5
C8—C9—C10122.6 (2)O3—C19—H19A109.5
C8—C9—Br1116.03 (17)O3—C19—H19B109.5
C10—C9—Br1121.22 (17)H19A—C19—H19B109.5
C9—C10—C5116.3 (2)O3—C19—H19C109.5
C9—C10—C1125.5 (2)H19A—C19—H19C109.5
C5—C10—C1118.2 (2)H19B—C19—H19C109.5
O1—C11—C12120.8 (2)
C18—O2—C2—C1162.1 (2)C4—C5—C10—C9177.4 (2)
C18—O2—C2—C3−16.0 (4)C6—C5—C10—C9−4.2 (3)
C10—C1—C2—O2−179.2 (2)C4—C5—C10—C1−4.0 (3)
C11—C1—C2—O2−14.2 (3)C6—C5—C10—C1174.3 (2)
C10—C1—C2—C3−1.2 (3)C2—C1—C10—C9−177.6 (2)
C11—C1—C2—C3163.9 (2)C11—C1—C10—C918.6 (3)
O2—C2—C3—C4176.3 (3)C2—C1—C10—C54.0 (3)
C1—C2—C3—C4−1.6 (4)C11—C1—C10—C5−159.8 (2)
C2—C3—C4—C51.6 (4)C2—C1—C11—O1−92.9 (3)
C3—C4—C5—C6−177.0 (3)C10—C1—C11—O171.6 (3)
C3—C4—C5—C101.3 (4)C2—C1—C11—C1282.9 (3)
C4—C5—C6—C7179.2 (3)C10—C1—C11—C12−112.7 (2)
C10—C5—C6—C70.9 (4)O1—C11—C12—C17−3.6 (3)
C5—C6—C7—C82.5 (4)C1—C11—C12—C17−179.3 (2)
C19—O3—C8—C9−179.9 (2)O1—C11—C12—C13177.3 (2)
C19—O3—C8—C71.1 (3)C1—C11—C12—C131.6 (3)
C6—C7—C8—O3176.7 (2)C17—C12—C13—C140.1 (4)
C6—C7—C8—C9−2.3 (3)C11—C12—C13—C14179.2 (2)
O3—C8—C9—C10179.58 (19)C12—C13—C14—C15−0.7 (4)
C7—C8—C9—C10−1.3 (3)C13—C14—C15—C160.9 (4)
O3—C8—C9—Br1−4.0 (3)C13—C14—C15—Cl1179.9 (2)
C7—C8—C9—Br1175.04 (16)C14—C15—C16—C17−0.4 (4)
C8—C9—C10—C54.5 (3)Cl1—C15—C16—C17−179.43 (19)
Br1—C9—C10—C5−171.66 (16)C15—C16—C17—C12−0.2 (4)
C8—C9—C10—C1−173.9 (2)C13—C12—C17—C160.4 (4)
Br1—C9—C10—C19.9 (3)C11—C12—C17—C16−178.7 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.493.366 (3)154
C19—H19A···Br1ii0.982.923.871 (3)165
C19—H19C···O1iii0.982.533.211 (3)126
C19—H19B···Cg1iv0.982.703.509 (3)140

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2530).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [PMC free article] [PubMed]
  • Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. [PMC free article] [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography