PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o767.
Published online 2010 March 6. doi:  10.1107/S1600536810007993
PMCID: PMC2983950

1,5-Dicyano­anthraquinone

Abstract

The complete mol­ecule of the title compound, C16H6N2O2, which is generated by a crystallographic inversion centre, is almost planar (r.m.s. deviation = 0.04 Å). In the crystal, adjacent mol­ecules are stacked along the a axis, with a shortest centroid–centroid separation of 3.826 (2) Å.

Related literature

For the synthesis, see: Casey et al. (1999 [triangle]); Coulson (1930a [triangle],b [triangle]). For some applications of anthraquinones, see: Alagesan & Samuelson (1997 [triangle]); Chang et al. (1996 [triangle]); Cheng et al. (1994 [triangle]); Kuritani et al. (1973 [triangle]); Lin et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o767-scheme1.jpg

Experimental

Crystal data

  • C16H6N2O2
  • M r = 258.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o767-efi1.jpg
  • a = 3.8256 (10) Å
  • b = 7.0183 (19) Å
  • c = 21.249 (6) Å
  • β = 91.064 (4)°
  • V = 570.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.35 × 0.06 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 4238 measured reflections
  • 1013 independent reflections
  • 600 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.149
  • S = 1.06
  • 1013 reflections
  • 92 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007993/hb5350sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007993/hb5350Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title substituted anthraquinone (Scheme I, Fig. 1) was synthesized to study its ability to absorb sulfur from oil when immobilized on silica surface (MCM-41). Anthraquinones are a class of anthracene derivatives having useful industrial applications (Alagesan & Samuelson, 1997; Chang et al., 1996; Cheng et al., 1994; Kuritani et al., 1973; Lin et al., 1995). However, they are usually only sparingly soluble in common oragnic solvents. In the present study, the synthesis involves the exchange of chlorine of 1,5-dichloroanthraquinone with the cyanide of copper cyanide (Coulson, 1930; Casey et al., 1999). The compound is somewhat soluble in DMSO but the recrystallized product is a yellow powder. Crystals were ultimately obtained by diffusing methanol into a DMSO solution of the compound.

The molecule of 1,5-dicyanoanthraquinone, which lies about a center-of-inversion, is planar (max. r.m.s.deviation 0.04 Å). Adjacent molecules are stacked over each other along the a-axis of the monoclinic unit cell; the distance is that of the a-axial length itself (Fig. 2).

Experimental

1,5-Dicyanoanthraquinone was prepared by using a reported procedure by reacting 1,5-dichloroanthraquinone with benzyl cyanide in presence of cuprous cyanide (Coulson, 1930a,b; Casey et al., 1999). The compound is sparingly soluble in common solvents; yellow prisms of (I) were obtained by the slow diffusion of methanol into a DMSO solution of the compound; m.p.> 633 K, decompose).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1.
The molecular structure of (I): displacement ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius. Unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).
Fig. 2.
Stacking of the molecules in the unit cell of (I).

Crystal data

C16H6N2O2F(000) = 264
Mr = 258.23Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 614 reflections
a = 3.8256 (10) Åθ = 3.1–25.4°
b = 7.0183 (19) ŵ = 0.10 mm1
c = 21.249 (6) ÅT = 293 K
β = 91.064 (4)°Prism, yellow
V = 570.4 (3) Å30.35 × 0.06 × 0.03 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 25.0°, θmin = 1.9°
ω scansh = −4→4
4238 measured reflectionsk = −8→8
1013 independent reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.149w = 1/[σ2(Fo2) + (0.0649P)2 + 0.1468P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1013 reflectionsΔρmax = 0.19 e Å3
92 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8448 (7)0.2052 (3)0.55023 (10)0.0691 (8)
N10.0797 (10)0.7591 (5)0.30574 (16)0.0837 (11)
C10.6782 (8)0.3375 (4)0.52815 (13)0.0407 (7)
C20.5829 (7)0.3390 (4)0.46013 (12)0.0373 (7)
C30.6669 (8)0.1823 (4)0.42375 (14)0.0473 (8)
H30.77520.07730.44230.057*
C40.5910 (9)0.1815 (5)0.36042 (15)0.0583 (10)
H40.64380.07500.33640.070*
C50.4369 (9)0.3378 (5)0.33232 (15)0.0566 (9)
H50.39030.33690.28920.068*
C60.3504 (7)0.4968 (4)0.36757 (13)0.0430 (8)
C70.4220 (7)0.4985 (4)0.43270 (12)0.0373 (7)
C80.1889 (8)0.6593 (5)0.33253 (14)0.0424 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.097 (2)0.0525 (15)0.0572 (15)0.0343 (13)−0.0103 (13)0.0056 (11)
N10.090 (3)0.093 (3)0.068 (2)−0.006 (2)0.0044 (19)−0.0029 (19)
C10.0450 (18)0.0323 (16)0.0450 (17)0.0043 (13)0.0016 (13)0.0035 (13)
C20.0383 (17)0.0308 (16)0.0427 (16)0.0014 (12)0.0011 (12)0.0016 (12)
C30.053 (2)0.0347 (18)0.0540 (19)0.0052 (13)0.0015 (14)−0.0067 (14)
C40.063 (2)0.052 (2)0.060 (2)0.0047 (16)0.0011 (17)−0.0155 (17)
C50.058 (2)0.070 (2)0.0414 (17)−0.0024 (17)−0.0007 (15)−0.0078 (16)
C60.0400 (17)0.0455 (18)0.0437 (17)−0.0032 (14)0.0028 (12)−0.0009 (14)
C70.0325 (15)0.0377 (17)0.0416 (16)−0.0027 (12)0.0024 (11)0.0024 (12)
C80.0388 (18)0.050 (2)0.0382 (17)0.0024 (14)−0.0053 (13)0.0059 (15)

Geometric parameters (Å, °)

O1—C11.216 (3)C4—C51.376 (4)
N1—C80.991 (4)C4—H40.9300
C1—C7i1.475 (4)C5—C61.387 (4)
C1—C21.484 (4)C5—H50.9300
C2—C31.386 (4)C6—C71.406 (3)
C2—C71.399 (4)C6—C81.490 (4)
C3—C41.371 (4)C7—C1i1.475 (4)
C3—H30.9300
O1—C1—C7i121.2 (3)C5—C4—H4119.9
O1—C1—C2119.9 (3)C4—C5—C6120.8 (3)
C7i—C1—C2118.8 (2)C4—C5—H5119.6
C3—C2—C7120.5 (3)C6—C5—H5119.6
C3—C2—C1118.8 (2)C5—C6—C7119.6 (3)
C7—C2—C1120.7 (2)C5—C6—C8116.5 (3)
C4—C3—C2120.2 (3)C7—C6—C8123.9 (3)
C4—C3—H3119.9C2—C7—C6118.7 (3)
C2—C3—H3119.9C2—C7—C1i120.4 (2)
C3—C4—C5120.2 (3)C6—C7—C1i120.9 (3)
C3—C4—H4119.9N1—C8—C6174.6 (4)
O1—C1—C2—C34.2 (4)C4—C5—C6—C8179.3 (3)
C7i—C1—C2—C3−177.9 (3)C3—C2—C7—C6−0.5 (4)
O1—C1—C2—C7−173.6 (3)C1—C2—C7—C6177.2 (2)
C7i—C1—C2—C74.3 (4)C3—C2—C7—C1i177.9 (3)
C7—C2—C3—C4−0.4 (4)C1—C2—C7—C1i−4.4 (4)
C1—C2—C3—C4−178.2 (3)C5—C6—C7—C20.6 (4)
C2—C3—C4—C51.3 (5)C8—C6—C7—C2−178.4 (3)
C3—C4—C5—C6−1.2 (5)C5—C6—C7—C1i−177.8 (3)
C4—C5—C6—C70.2 (4)C8—C6—C7—C1i3.2 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5350).

References

  • Alagesan, K. & Samuelson, A. G. (1997). Synth. Met.87, 37–44.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casey, J. L., Deady, L. W., Hughes, A. B., Klonis, N., Quazi, N. H. & Tilley, L. M. (1999). PCT Int. Appl. Patent No. WO 99-AU14419990311.
  • Chang, J. S., Liu, L. K. & Wang, C. M. (1996). Jpn J. Appl. Phys.35, L1042–L1043.
  • Cheng, H. W., Wang, C. M. & Liu, L. K. (1994). Jpn J. Appl. Phys.33, L607–L609.
  • Coulson, E. A. (1930a). J. Chem. Soc. pp. 1931–1936.
  • Coulson, E. A. (1930b). Chem. Abstr.24, 49079.
  • Kuritani, M., Sakata, Y., Ogura, F. & Nakagawa, M. (1973). Bull. Chem. Soc. Jpn, 46, 605–610.
  • Lin, H. L., Liu, L. K. & Wang, C. M. (1995). J. Phys. Chem.99, 9136–9142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography