PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o1002–o1003.
Published online 2010 March 31. doi:  10.1107/S1600536810011189
PMCID: PMC2983949

2,2′-[(Propane-1,3-diyldinitrilo)bis­(phenyl­methyl­idyne)]diphenol

Abstract

In the title mol­ecule, C29H26N2O2, there are two strong intra­molecular O—H(...)N hydrogen bonds involving the hydr­oxy and imine groups, forming S(6) ring motifs. The dihedral angles between adjacent phenyl rings and phenol-containing planes are 85.27 (19) and 91.38 (18)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds connect mol­ecules into a two-dimensional network.

Related literature

The title compound forms part of the group of Schiff bases with a similar method of synthesis as described in Schilf et al. (2007 [triangle]). The inter­molecular hydrogen bonds O—H(...)N between the hydr­oxy and imine are common to this type of compound as shown with the series of compounds reported by Fernández et al. (2001 [triangle]); Kabak (2003 [triangle]); Wojciechowski et al. (2001 [triangle]); Dey et al. (2001 [triangle]); Koşar, et al. (2004 [triangle]); Lu, et al. (2008 [triangle]); Qiu & Zhao (2008 [triangle]); Montazerozohori et al. (2009 [triangle]); Corden et al. (1996 [triangle]). For a decription of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1002-scheme1.jpg

Experimental

Crystal data

  • C29H26N2O2
  • M r = 434.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1002-efi1.jpg
  • a = 18.226 (2) Å
  • b = 8.2303 (9) Å
  • c = 18.642 (2) Å
  • β = 119.086 (5)°
  • V = 2443.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.7 × 0.5 × 0.28 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • 21350 measured reflections
  • 5896 independent reflections
  • 3749 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.173
  • S = 1.03
  • 5896 reflections
  • 300 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART-NT (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011189/lh5012sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011189/lh5012Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of the Witwatersrand and the National Research Foundation (GUN 2069064) are thanked for providing the infrastructure and for the award of a research grant required to carry out this work.

supplementary crystallographic information

Comment

The molecular structure of the title compound is shown in Fig. 1. There are two strong intramolecular O—H..O hydrogen bonds involving the hydroxyl and imine groups forming S(6) ring motifs (Bernstein et al., 1995). These types of hydrogen bonds are common to some reported molecular structures (Schilf et al., 2007; Fernández et al., 2001; Kabak, 2003; Wojciechowski et al., 2001; Dey et al., 2001; Koşar, et al., 2004; Lu, et al., 2008; Qiu & Zhao, 2008; Montazerozohori et al., 2009; Corden et al., 1996). In the crystal structure, weak intermolecular C—H···O hydrogen bond connect molecules to form a two-dimensional network.

Experimental

A mixture of 1.0 mmol (2.00 g) of 2-hydroxybenzophenone, 0.5 mmole (0.42 cm3) of 1,3-propanediamine and 2 drops of glacial acetic acid in 40 ml of methanol was refluxed for 8 h. The excess of solvent (ca. 30 ml) was then evaporated. After cooling to 277 K a yellow solid was produced. The polycrystalline product was collected by filtration, washed with methanol and dried. A yield of 52% was obtained. Recrystalization from an ethanol solution yielded single crystals suitable for x-ray diffraction. Elemental analysis C% 79.67 H% 6.26 N% 6.11%.

Refinement

All H atoms were refined using a riding model, with C—H = 0.93-0.97 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Crystal data

C29H26N2O2F(000) = 920
Mr = 434.52Dx = 1.181 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21350 reflections
a = 18.226 (2) Åθ = 2.1–23.0°
b = 8.2303 (9) ŵ = 0.07 mm1
c = 18.642 (2) ÅT = 293 K
β = 119.086 (5)°Block, yellow
V = 2443.7 (5) Å30.7 × 0.5 × 0.28 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometerRint = 0.071
[var phi] and ω scansθmax = 28°, θmin = 1.3°
21350 measured reflectionsh = −19→24
5896 independent reflectionsk = −10→10
3749 reflections with I > 2σ(I)l = −24→20

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055w = 1/[σ2(Fo2) + (0.0897P)2 + 0.2258P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.23 e Å3
5896 reflectionsΔρmin = −0.36 e Å3
300 parameters

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.17087 (13)0.1655 (3)0.08228 (11)0.0718 (5)
H10.19260.26720.08130.086*
C20.15625 (16)0.0517 (3)0.02117 (14)0.0940 (7)
H20.16890.0776−0.02010.113*
C30.12367 (14)−0.0961 (3)0.02162 (16)0.0947 (8)
H30.1142−0.1708−0.01940.114*
C40.10480 (16)−0.1362 (3)0.08146 (16)0.0960 (7)
H40.0823−0.23770.08120.115*
C50.11925 (13)−0.0247 (3)0.14328 (13)0.0759 (5)
H50.1062−0.05190.18420.091*
C60.15300 (9)0.12641 (19)0.14400 (9)0.0501 (4)
C70.17057 (8)0.24201 (18)0.21320 (9)0.0457 (3)
C80.10782 (9)0.36732 (18)0.20194 (9)0.0476 (3)
C90.03699 (10)0.3944 (2)0.12497 (11)0.0612 (4)
H90.02910.33080.08050.073*
C10−0.02150 (12)0.5138 (3)0.11365 (13)0.0775 (6)
H10−0.06750.53120.0620.093*
C11−0.01072 (13)0.6066 (3)0.17994 (16)0.0826 (6)
H11−0.050.68610.17260.099*
C120.05729 (13)0.5829 (2)0.25660 (14)0.0735 (5)
H120.06320.64610.30040.088*
C130.11810 (10)0.4642 (2)0.26941 (10)0.0548 (4)
C140.30624 (10)0.1168 (2)0.29798 (11)0.0637 (4)
H14A0.31030.10370.24830.076*
H14B0.29350.01170.31280.076*
C150.38907 (10)0.1788 (2)0.36662 (10)0.0590 (4)
H15A0.3850.18690.41650.071*
H15B0.39920.2870.35280.071*
C160.46364 (10)0.0702 (2)0.38294 (10)0.0606 (4)
H16A0.51250.10340.43360.073*
H16B0.4508−0.04160.38910.073*
C170.66693 (10)0.2305 (2)0.45511 (10)0.0602 (4)
H170.64420.33060.43160.072*
C180.73422 (12)0.2233 (3)0.53470 (12)0.0729 (5)
H180.7560.31850.56440.087*
C190.76854 (12)0.0763 (3)0.56945 (12)0.0743 (5)
H190.8130.07210.62290.089*
C200.73734 (12)−0.0646 (3)0.52550 (13)0.0747 (5)
H200.7618−0.16370.54890.09*
C210.66949 (11)−0.0604 (2)0.44627 (11)0.0608 (4)
H210.6481−0.15640.41720.073*
C220.63373 (9)0.08832 (18)0.41069 (9)0.0469 (3)
C230.55780 (9)0.09263 (18)0.32620 (9)0.0496 (4)
C240.57020 (11)0.10567 (19)0.25341 (10)0.0539 (4)
C250.65069 (12)0.1279 (2)0.26229 (12)0.0676 (5)
H250.69680.1340.31470.081*
C260.66269 (15)0.1409 (3)0.19441 (15)0.0808 (6)
H260.71630.1560.20120.097*
C270.59361 (18)0.1312 (3)0.11627 (15)0.0861 (7)
H270.60130.13870.07060.103*
C280.51399 (16)0.1106 (2)0.10547 (12)0.0769 (6)
H280.46860.10450.05270.092*
C290.50056 (12)0.09859 (19)0.17301 (11)0.0597 (4)
N10.23864 (8)0.23289 (17)0.28316 (8)0.0562 (3)
N20.48206 (8)0.08218 (17)0.31467 (8)0.0564 (3)
O10.18408 (8)0.44387 (17)0.34460 (7)0.0709 (4)
H1A0.21670.37810.34240.106*
O20.42130 (8)0.08050 (17)0.15964 (7)0.0715 (4)
H2A0.42180.0740.20380.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0820 (13)0.0800 (12)0.0680 (11)−0.0146 (10)0.0478 (10)−0.0153 (9)
C20.1009 (17)0.125 (2)0.0795 (14)−0.0200 (15)0.0625 (14)−0.0331 (13)
C30.0776 (14)0.1138 (19)0.1001 (16)−0.0262 (13)0.0490 (13)−0.0609 (14)
C40.0966 (17)0.0856 (15)0.1172 (18)−0.0384 (13)0.0610 (16)−0.0465 (14)
C50.0807 (13)0.0769 (12)0.0816 (13)−0.0279 (10)0.0484 (11)−0.0252 (10)
C60.0390 (7)0.0596 (9)0.0508 (8)−0.0030 (6)0.0212 (6)−0.0107 (7)
C70.0393 (7)0.0540 (8)0.0465 (7)−0.0056 (6)0.0229 (6)−0.0073 (6)
C80.0400 (7)0.0531 (8)0.0529 (8)−0.0062 (6)0.0250 (7)−0.0070 (6)
C90.0456 (9)0.0714 (11)0.0615 (10)−0.0002 (7)0.0220 (8)−0.0086 (8)
C100.0513 (10)0.0855 (13)0.0823 (13)0.0124 (9)0.0221 (9)−0.0007 (11)
C110.0607 (12)0.0732 (12)0.1165 (18)0.0144 (9)0.0451 (13)−0.0065 (12)
C120.0679 (12)0.0709 (12)0.0926 (14)0.0000 (9)0.0475 (11)−0.0229 (10)
C130.0520 (9)0.0573 (9)0.0625 (10)−0.0083 (7)0.0338 (8)−0.0127 (7)
C140.0450 (9)0.0724 (11)0.0627 (10)0.0065 (7)0.0175 (8)−0.0136 (8)
C150.0442 (8)0.0750 (11)0.0546 (9)−0.0015 (7)0.0217 (7)−0.0083 (8)
C160.0435 (8)0.0848 (12)0.0528 (9)0.0052 (8)0.0229 (7)0.0092 (8)
C170.0553 (9)0.0568 (9)0.0662 (10)−0.0005 (7)0.0277 (8)−0.0048 (8)
C180.0569 (10)0.0913 (14)0.0704 (12)−0.0188 (10)0.0310 (9)−0.0281 (10)
C190.0501 (10)0.1127 (17)0.0548 (10)0.0029 (10)0.0213 (8)0.0014 (10)
C200.0621 (11)0.0852 (14)0.0726 (12)0.0204 (10)0.0294 (10)0.0230 (11)
C210.0566 (10)0.0567 (9)0.0669 (10)0.0052 (7)0.0282 (9)0.0009 (8)
C220.0402 (7)0.0523 (8)0.0505 (8)0.0024 (6)0.0237 (7)−0.0007 (6)
C230.0455 (8)0.0508 (8)0.0518 (8)0.0035 (6)0.0230 (7)−0.0005 (6)
C240.0605 (9)0.0511 (8)0.0554 (9)0.0042 (7)0.0324 (8)−0.0011 (7)
C250.0690 (11)0.0714 (11)0.0764 (12)0.0021 (9)0.0465 (10)−0.0025 (9)
C260.0994 (16)0.0749 (13)0.1028 (16)0.0019 (11)0.0763 (15)−0.0001 (11)
C270.136 (2)0.0732 (13)0.0831 (15)0.0020 (13)0.0797 (16)0.0013 (11)
C280.1119 (17)0.0633 (11)0.0601 (11)0.0001 (11)0.0456 (12)−0.0017 (8)
C290.0754 (12)0.0501 (9)0.0562 (9)0.0028 (8)0.0340 (9)−0.0002 (7)
N10.0429 (7)0.0685 (9)0.0517 (7)0.0042 (6)0.0187 (6)−0.0111 (6)
N20.0442 (7)0.0732 (9)0.0494 (7)0.0036 (6)0.0209 (6)0.0030 (6)
O10.0677 (8)0.0854 (9)0.0572 (7)0.0013 (6)0.0285 (6)−0.0219 (6)
O20.0667 (8)0.0858 (9)0.0505 (6)−0.0029 (6)0.0193 (6)−0.0008 (6)

Geometric parameters (Å, °)

C1—C61.378 (2)C15—H15B0.97
C1—C21.396 (3)C16—N21.469 (2)
C1—H10.93C16—H16A0.97
C2—C31.356 (3)C16—H16B0.97
C2—H20.93C17—C221.391 (2)
C3—C41.358 (3)C17—C181.393 (3)
C3—H30.93C17—H170.93
C4—C51.394 (3)C18—C191.371 (3)
C4—H40.93C18—H180.93
C5—C61.385 (2)C19—C201.374 (3)
C5—H50.93C19—H190.93
C6—C71.507 (2)C20—C211.392 (3)
C7—N11.2934 (19)C20—H200.93
C7—C81.477 (2)C21—C221.394 (2)
C8—C91.405 (2)C21—H210.93
C8—C131.422 (2)C22—C231.509 (2)
C9—C101.389 (3)C23—N21.293 (2)
C9—H90.93C23—C241.484 (2)
C10—C111.383 (3)C24—C251.406 (2)
C10—H100.93C24—C291.418 (2)
C11—C121.376 (3)C25—C261.389 (3)
C11—H110.93C25—H250.93
C12—C131.408 (2)C26—C271.389 (3)
C12—H120.93C26—H260.93
C13—O11.342 (2)C27—C281.375 (3)
C14—N11.475 (2)C27—H270.93
C14—C151.516 (2)C28—C291.398 (3)
C14—H14A0.97C28—H280.93
C14—H14B0.97C29—O21.349 (2)
C15—C161.528 (2)O1—H1A0.82
C15—H15A0.97O2—H2A0.82
C6—C1—C2119.74 (19)H15A—C15—H15B107.7
C6—C1—H1120.1N2—C16—C15110.13 (13)
C2—C1—H1120.1N2—C16—H16A109.6
C3—C2—C1120.5 (2)C15—C16—H16A109.6
C3—C2—H2119.8N2—C16—H16B109.6
C1—C2—H2119.8C15—C16—H16B109.6
C2—C3—C4120.63 (19)H16A—C16—H16B108.1
C2—C3—H3119.7C22—C17—C18120.06 (16)
C4—C3—H3119.7C22—C17—H17120
C3—C4—C5119.9 (2)C18—C17—H17120
C3—C4—H4120.1C19—C18—C17120.31 (18)
C5—C4—H4120.1C19—C18—H18119.8
C6—C5—C4120.23 (19)C17—C18—H18119.8
C6—C5—H5119.9C18—C19—C20120.11 (17)
C4—C5—H5119.9C18—C19—H19119.9
C1—C6—C5119.07 (16)C20—C19—H19119.9
C1—C6—C7121.98 (15)C19—C20—C21120.55 (17)
C5—C6—C7118.94 (15)C19—C20—H20119.7
N1—C7—C8118.72 (13)C21—C20—H20119.7
N1—C7—C6121.82 (13)C20—C21—C22119.74 (16)
C8—C7—C6119.45 (12)C20—C21—H21120.1
C9—C8—C13118.36 (14)C22—C21—H21120.1
C9—C8—C7121.28 (13)C17—C22—C21119.22 (15)
C13—C8—C7120.37 (13)C17—C22—C23120.95 (13)
C10—C9—C8121.58 (17)C21—C22—C23119.78 (13)
C10—C9—H9119.2N2—C23—C24118.54 (14)
C8—C9—H9119.2N2—C23—C22122.36 (14)
C11—C10—C9119.33 (19)C24—C23—C22119.09 (13)
C11—C10—H10120.3C25—C24—C29118.44 (16)
C9—C10—H10120.3C25—C24—C23121.04 (15)
C12—C11—C10120.99 (17)C29—C24—C23120.51 (15)
C12—C11—H11119.5C26—C25—C24121.34 (19)
C10—C11—H11119.5C26—C25—H25119.3
C11—C12—C13120.75 (17)C24—C25—H25119.3
C11—C12—H12119.6C27—C26—C25119.15 (19)
C13—C12—H12119.6C27—C26—H26120.4
O1—C13—C12119.70 (15)C25—C26—H26120.4
O1—C13—C8121.33 (14)C28—C27—C26120.96 (18)
C12—C13—C8118.98 (16)C28—C27—H27119.5
N1—C14—C15109.80 (14)C26—C27—H27119.5
N1—C14—H14A109.7C27—C28—C29120.7 (2)
C15—C14—H14A109.7C27—C28—H28119.6
N1—C14—H14B109.7C29—C28—H28119.6
C15—C14—H14B109.7O2—C29—C28118.80 (17)
H14A—C14—H14B108.2O2—C29—C24121.83 (15)
C14—C15—C16113.32 (14)C28—C29—C24119.37 (18)
C14—C15—H15A108.9C7—N1—C14122.06 (13)
C16—C15—H15A108.9C23—N2—C16122.40 (13)
C14—C15—H15B108.9C13—O1—H1A109.5
C16—C15—H15B108.9C29—O2—H2A109.5
C6—C1—C2—C30.8 (4)C18—C19—C20—C21−1.6 (3)
C1—C2—C3—C4−0.1 (4)C19—C20—C21—C221.0 (3)
C2—C3—C4—C5−0.2 (4)C18—C17—C22—C21−1.1 (2)
C3—C4—C5—C6−0.2 (4)C18—C17—C22—C23176.55 (14)
C2—C1—C6—C5−1.2 (3)C20—C21—C22—C170.3 (2)
C2—C1—C6—C7177.65 (19)C20—C21—C22—C23−177.36 (15)
C4—C5—C6—C10.9 (3)C17—C22—C23—N2−90.01 (19)
C4—C5—C6—C7−177.97 (19)C21—C22—C23—N287.61 (19)
C1—C6—C7—N1−96.1 (2)C17—C22—C23—C2491.38 (18)
C5—C6—C7—N182.8 (2)C21—C22—C23—C24−91.00 (18)
C1—C6—C7—C885.27 (19)N2—C23—C24—C25175.86 (15)
C5—C6—C7—C8−95.88 (19)C22—C23—C24—C25−5.5 (2)
N1—C7—C8—C9173.25 (15)N2—C23—C24—C29−3.1 (2)
C6—C7—C8—C9−8.1 (2)C22—C23—C24—C29175.57 (13)
N1—C7—C8—C13−6.6 (2)C29—C24—C25—C26−0.7 (3)
C6—C7—C8—C13172.08 (13)C23—C24—C25—C26−179.70 (16)
C13—C8—C9—C101.0 (3)C24—C25—C26—C27−0.2 (3)
C7—C8—C9—C10−178.90 (17)C25—C26—C27—C280.7 (3)
C8—C9—C10—C11−1.2 (3)C26—C27—C28—C29−0.1 (3)
C9—C10—C11—C120.5 (3)C27—C28—C29—O2179.16 (17)
C10—C11—C12—C130.4 (3)C27—C28—C29—C24−0.9 (3)
C11—C12—C13—O1179.67 (18)C25—C24—C29—O2−178.77 (16)
C11—C12—C13—C8−0.6 (3)C23—C24—C29—O20.2 (2)
C9—C8—C13—O1179.63 (15)C25—C24—C29—C281.2 (2)
C7—C8—C13—O1−0.5 (2)C23—C24—C29—C28−179.77 (15)
C9—C8—C13—C12−0.1 (2)C8—C7—N1—C14−176.84 (14)
C7—C8—C13—C12179.80 (15)C6—C7—N1—C144.5 (2)
N1—C14—C15—C16−176.82 (14)C15—C14—N1—C7155.47 (15)
C14—C15—C16—N270.2 (2)C24—C23—N2—C16−179.47 (14)
C22—C17—C18—C190.5 (3)C22—C23—N2—C161.9 (2)
C17—C18—C19—C200.8 (3)C15—C16—N2—C23137.49 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.802.5344 (17)148
O2—H2A···N20.821.812.5431 (18)148
C17—H17···O2i0.932.563.481 (2)168
C18—H18···O1ii0.932.473.395 (3)174
C21—H21···O2iii0.932.563.492 (2)175

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5012).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (1998). SMART-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Corden, J. P., Errington, W., Moore, P., Phillips, P. R. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 3199–3202.
  • Dey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct.562, 177–184
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fernández, G. J. M., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct 561, 197–207.
  • Kabak, M. (2003). J. Mol. Struct.655, 135–139
  • Koşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst. C60, o458–o460. [PubMed]
  • Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693. [PMC free article] [PubMed]
  • Montazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662–o1663. [PMC free article] [PubMed]
  • Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067. [PMC free article] [PubMed]
  • Schilf, W., Kamienski, B., Szady-Chełmieniecka, A., Grech, E., Makal, A. & Wozniak, K. (2007). J. Mol. Struct.94–101, 844–845
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2001). J. Mol. Struct.650, 191–199.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography