PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m473.
Published online 2010 March 31. doi:  10.1107/S1600536810010822
PMCID: PMC2983946

Bis(7-meth­oxy-1-methyl-4,9-dihydro-3H-β-carbolinium) tetra­chloridozincate

Abstract

In the title compound, (C13H15N2O)2[ZnCl4], also known as di(harmalinium) tetra­chloridozincate, the ZnII atom is in a distorted tetrahedral coordination of the chlorido ligands. In the cation, the meth­oxy and methyl groups are both coplanar with with rings to which they are attached [maximum deviations of 0.232 (4) and 0.259 (4) Å, respectively]. In the crystal, the alkaloid cations and metal complex anions inter­act by way of N—H(...)Cl hydrogen bonds involving each Cl atom, resulting in a network structure.

Related literature

For the activity of metal complexes with harmaline (7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole), see: Al-Allaf et al. (1990 [triangle]). For the structures of harmaline and related compounds, see: Reimers et al. (1984 [triangle]); Wouters (1997 [triangle]); Ferretti et al. (2004 [triangle]). For zincate anions, see: Ma et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m473-scheme1.jpg

Experimental

Crystal data

  • (C13H15N2O)2[ZnCl4]
  • M r = 637.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m473-efi1.jpg
  • a = 11.2314 (2) Å
  • b = 19.1274 (2) Å
  • c = 13.5614 (2) Å
  • β = 107.0797 (16)°
  • V = 2784.87 (7) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 5.01 mm−1
  • T = 293 K
  • 0.25 × 0.12 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007 [triangle]) T min = 0.544, T max = 0.644
  • 12418 measured reflections
  • 4954 independent reflections
  • 3724 reflections with I > 2σ(I)
  • R int = 0.035
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.116
  • S = 1.04
  • 4954 reflections
  • 334 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010822/bv2139sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010822/bv2139Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the Fundamental Research Center of Science and Technology, Republic of Uzbekistan (F 3-142).

supplementary crystallographic information

Comment

The metal complexes of the harmaline (7-methoxy-1-methyl-4,9-dihydro-3H-β-carboline) and other carboline alkaloids have biological activity (Al-Allaf et al. 1990). In this study we synthesized the molecular salt containing a zinc-chlorido complex and harmalinium cations, and report the structure of the title compound, (I).

The molecular structure is shown on Fig.1 and geometrical parameters are available from archived CIF.

Zinc ions are anions [ZnCl4]2- have distorted tetragonal configuration (Sutherland et al., 2009) and the valence angles are close to tetrahedral, being in the ranges 104.15 (4)-113.37 (4)°. The Zn—Cl bonds are not equal and values of bond lengths, being in the range 2.2536 (10)-2.2885 (10)Å .

Bond lengths and angles in the cations do not differ from their normal values. The alkaloid molecules are in a protonated form and the proton is localized at the nitrogen atom in the carboline ring as observed previously in structure of harmaline hydrochloride (Ferretti et al., 2004; Wouters, 1997). Protonization leads to a decrease in CH2— CH2 and C═N bond lengths in comparison with the harmaline structure (Reimers et al., 1984). In the pyrrole cycle C—NH bond lengths are not equivalent as distinctions are expressed in a greater degree than for the harmaline crystal structure (Reimers et al., 1984). Both methoxy and methyl groups are located in the plane of the pyrrole and benzole rings and the carboline ring has a noncoplanar conformation with the torsion angles shown in the table 1. The sp3-hybridizied carbon atoms in the cycle being displaced from the mean plane of carboline cycle by -0.286 (4), - 0.199 (4), 0.257 (5) and -0.090 (4) Å for C3, C4, C16, C17, respectively.

Unlike the parent harmaline structure (Reimers et al., 1984) in which only one hydrogen bond is present, in case of compound I a network of hydrogen bonds is formed (Fig.2) as in case of harmine hydrochloride where hydrogen bonds are formed between NH-groups as acceptors and chlorine atoms as donors of electrons (Ferretti et al., 2004; Wouters, 1997).

Experimental

The ZnCl2 (1 mmol) and harmaline (2.5 mmol) were heated on water bath in 2M solution of hydrochloric acid in ethanol. The resulting solution yielded colourless crystals which were filtered off and washed twice with acetone. Elem. Analysis found: C 49.0, H 4.7, N 8.8, Zn 10.3%; requires: C 49.0, H 4.7, N 8.8, Zn 10.3%. Crystals of the title compound, suitable to X-ray diffraction analysis, were selected directly from the sample as prepared.

Refinement

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All the H-atoms were included in calculated positions [N—H = 0.88 Å, C—H = 0.93 - 0.96 Å] and treated as riding atoms [Uiso(H) = k × Ueq(parent atom], where k = 1.2 for NH2 and CH H atoms and 1.5 for methyl H atomshydrogens].

Figures

Fig. 1.
A view of the structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.
Fig. 2.
The crystal structure packing scheme showing the hydrogen bonds system.

Crystal data

(C13H15N2O)2[ZnCl4]F(000) = 1312
Mr = 637.71Dx = 1.521 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.2314 (2) ÅCell parameters from 4954 reflections
b = 19.1274 (2) Åθ = 4.1–71.0°
c = 13.5614 (2) ŵ = 5.01 mm1
β = 107.0797 (16)°T = 293 K
V = 2784.87 (7) Å3Monoclinic, colourless
Z = 40.25 × 0.12 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur diffractometer3724 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
graphiteθmax = 71.0°, θmin = 4.1°
heavy atom scansh = −11→13
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007)k = −18→22
Tmin = 0.544, Tmax = 0.644l = −16→16
12418 measured reflections3 standard reflections every 120 reflections
4954 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0588P)2 + 1.2361P] where P = (Fo2 + 2Fc2)/3
4954 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.46 e Å3
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.76391 (4)0.05281 (2)0.78045 (4)0.04473 (15)
Cl10.80185 (10)0.14137 (5)0.68163 (7)0.0583 (3)
Cl20.90754 (9)−0.03331 (5)0.80919 (8)0.0623 (3)
Cl30.57608 (8)0.00479 (5)0.70451 (9)0.0678 (3)
Cl40.77170 (12)0.10536 (5)0.93383 (8)0.0734 (3)
O10.1080 (2)0.18482 (13)0.5051 (2)0.0595 (7)
N10.0972 (2)−0.04362 (13)0.6637 (2)0.0402 (6)
H1A0.0414−0.04000.69530.048*
N20.2328 (3)−0.21801 (15)0.6886 (2)0.0480 (7)
H2A0.2367−0.25660.72210.058*
C10.1660 (3)−0.10271 (17)0.6593 (2)0.0400 (7)
C20.1632 (3)−0.16743 (17)0.7074 (3)0.0444 (8)
C30.3039 (3)−0.21253 (19)0.6142 (3)0.0540 (9)
H3A0.2531−0.23010.54820.065*
H3B0.3768−0.24230.63690.065*
C40.3451 (3)−0.14021 (19)0.5997 (3)0.0508 (9)
H4A0.4222−0.13000.65290.061*
H4B0.3613−0.13700.53340.061*
C50.2495 (3)−0.08782 (17)0.6044 (2)0.0390 (7)
C60.2285 (3)−0.01784 (17)0.5711 (2)0.0388 (7)
C70.2806 (3)0.02628 (19)0.5116 (2)0.0476 (8)
H7A0.34400.01040.48600.057*
C80.2367 (3)0.0920 (2)0.4926 (3)0.0521 (9)
H8A0.26960.12140.45260.063*
C90.1411 (3)0.11741 (18)0.5325 (2)0.0451 (8)
C100.0876 (3)0.07649 (17)0.5905 (2)0.0402 (7)
H10A0.02470.09320.61610.048*
C110.1329 (3)0.00793 (16)0.6094 (2)0.0357 (7)
C120.0871 (4)−0.1803 (2)0.7790 (3)0.0640 (11)
H12A0.0985−0.22770.80320.096*
H12B0.0007−0.17250.74330.096*
H12C0.1130−0.14900.83670.096*
C130.0274 (4)0.2179 (2)0.5539 (3)0.0582 (10)
H13A0.01110.26490.52860.087*
H13B0.06610.21880.62710.087*
H13C−0.04950.19250.53890.087*
N30.3936 (3)0.10991 (15)0.7707 (2)0.0473 (7)
H3C0.43950.07840.75500.057*
N40.2175 (3)0.03927 (17)0.9329 (2)0.0573 (8)
H4C0.21280.00350.97000.069*
O20.4732 (3)0.32178 (13)0.5990 (2)0.0626 (7)
C140.3153 (3)0.10024 (18)0.8312 (2)0.0437 (8)
C150.3010 (3)0.03874 (19)0.8826 (3)0.0482 (8)
C160.1328 (5)0.0970 (2)0.9292 (4)0.0863 (15)
H16A0.05490.08660.87710.104*
H16B0.11530.09940.99500.104*
C170.1742 (4)0.1655 (2)0.9072 (3)0.0649 (11)
H17A0.21740.18820.97170.078*
H17B0.10190.19370.87340.078*
C180.2582 (3)0.16256 (18)0.8406 (2)0.0442 (8)
C190.3027 (3)0.21319 (18)0.7847 (2)0.0422 (7)
C200.2842 (3)0.28532 (19)0.7657 (3)0.0495 (8)
H20A0.23190.31020.79490.059*
C210.3427 (3)0.31842 (18)0.7049 (3)0.0508 (9)
H21A0.33020.36610.69260.061*
C220.4230 (3)0.28139 (18)0.6597 (3)0.0474 (8)
C230.4460 (3)0.21113 (18)0.6765 (3)0.0462 (8)
H23A0.49880.18700.64700.055*
C240.3857 (3)0.17796 (17)0.7401 (2)0.0418 (7)
C250.3748 (4)−0.0254 (2)0.8814 (3)0.0622 (10)
H25A0.3504−0.06130.92090.093*
H25B0.4618−0.01540.91080.093*
H25C0.3601−0.04100.81150.093*
C260.5400 (4)0.2872 (2)0.5392 (3)0.0639 (11)
H26A0.57060.32110.50030.096*
H26B0.48580.25500.49290.096*
H26C0.60900.26220.58410.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0481 (3)0.0351 (2)0.0585 (3)0.0031 (2)0.0273 (2)0.0015 (2)
Cl10.0841 (6)0.0390 (5)0.0623 (5)−0.0064 (4)0.0377 (5)0.0017 (4)
Cl20.0606 (5)0.0537 (5)0.0827 (6)0.0188 (4)0.0365 (5)0.0093 (5)
Cl30.0475 (5)0.0542 (6)0.1095 (8)−0.0051 (4)0.0350 (5)−0.0148 (6)
Cl40.1199 (9)0.0529 (6)0.0611 (5)0.0163 (6)0.0481 (6)0.0022 (5)
O10.0744 (17)0.0393 (14)0.0765 (17)0.0082 (13)0.0404 (15)0.0158 (13)
N10.0428 (14)0.0343 (15)0.0504 (15)−0.0003 (12)0.0241 (12)0.0002 (12)
N20.0563 (17)0.0316 (15)0.0590 (16)0.0076 (13)0.0214 (14)0.0037 (13)
C10.0412 (17)0.0359 (17)0.0420 (16)−0.0014 (14)0.0111 (14)0.0004 (14)
C20.0469 (18)0.0370 (18)0.0516 (19)−0.0035 (16)0.0179 (15)−0.0037 (15)
C30.050 (2)0.048 (2)0.065 (2)0.0071 (17)0.0193 (18)−0.0009 (19)
C40.056 (2)0.046 (2)0.055 (2)0.0059 (17)0.0230 (17)−0.0025 (17)
C50.0387 (16)0.0397 (18)0.0395 (16)−0.0007 (14)0.0129 (14)−0.0052 (14)
C60.0418 (17)0.0381 (18)0.0365 (15)−0.0017 (14)0.0117 (13)−0.0052 (14)
C70.0515 (19)0.051 (2)0.0470 (18)0.0020 (17)0.0254 (16)0.0018 (17)
C80.056 (2)0.054 (2)0.0528 (19)−0.0036 (18)0.0251 (17)0.0096 (18)
C90.052 (2)0.0370 (18)0.0459 (17)−0.0005 (16)0.0145 (15)0.0049 (15)
C100.0418 (17)0.0360 (17)0.0445 (17)−0.0007 (14)0.0154 (14)0.0003 (14)
C110.0390 (16)0.0323 (16)0.0364 (15)−0.0045 (13)0.0121 (13)−0.0008 (13)
C120.079 (3)0.041 (2)0.087 (3)0.007 (2)0.048 (2)0.015 (2)
C130.060 (2)0.046 (2)0.071 (2)0.0085 (18)0.0224 (19)0.0100 (19)
N30.0495 (16)0.0385 (16)0.0592 (16)0.0045 (13)0.0243 (14)−0.0017 (14)
N40.070 (2)0.0500 (19)0.0582 (17)−0.0025 (16)0.0281 (16)0.0031 (15)
O20.0742 (17)0.0449 (15)0.0789 (17)−0.0053 (13)0.0384 (15)−0.0002 (14)
C140.0442 (18)0.0416 (19)0.0452 (17)−0.0028 (15)0.0127 (15)−0.0054 (15)
C150.053 (2)0.045 (2)0.0451 (18)−0.0054 (16)0.0107 (16)−0.0062 (16)
C160.096 (3)0.070 (3)0.119 (4)0.004 (3)0.071 (3)0.008 (3)
C170.072 (3)0.061 (3)0.075 (3)0.007 (2)0.041 (2)−0.001 (2)
C180.0444 (18)0.046 (2)0.0421 (17)−0.0009 (16)0.0124 (15)−0.0087 (15)
C190.0414 (17)0.0404 (18)0.0440 (17)0.0019 (14)0.0114 (14)−0.0082 (15)
C200.051 (2)0.0395 (19)0.060 (2)0.0088 (16)0.0193 (17)−0.0090 (17)
C210.059 (2)0.0306 (17)0.063 (2)0.0016 (16)0.0180 (18)−0.0051 (17)
C220.0457 (18)0.0406 (19)0.0560 (19)−0.0041 (16)0.0155 (16)−0.0038 (16)
C230.0437 (18)0.0421 (19)0.0550 (19)0.0021 (16)0.0179 (16)−0.0051 (16)
C240.0388 (17)0.0348 (18)0.0495 (18)0.0004 (14)0.0094 (14)−0.0061 (15)
C250.077 (3)0.045 (2)0.068 (2)0.006 (2)0.026 (2)0.0060 (19)
C260.069 (3)0.061 (3)0.072 (2)−0.002 (2)0.037 (2)0.001 (2)

Geometric parameters (Å, °)

Zn1—Cl32.2536 (10)C14—C181.377 (5)
Zn1—Cl22.2580 (10)C14—C151.400 (5)
Zn1—Cl12.2765 (9)C15—C251.484 (5)
Zn1—Cl42.2885 (10)C16—C171.449 (6)
O1—C91.363 (4)C17—C181.487 (5)
O1—C131.417 (4)C18—C191.409 (5)
N1—C111.359 (4)C19—C201.407 (5)
N1—C11.380 (4)C19—C241.422 (4)
N2—C21.315 (4)C20—C211.353 (5)
N2—C31.463 (4)C21—C221.420 (5)
C1—C51.388 (4)C22—C231.375 (5)
C1—C21.404 (4)C23—C241.396 (5)
C2—C121.491 (5)N1—H1A0.86
C3—C41.490 (5)N2—H2A0.86
C4—C51.484 (4)C3—H3A0.97
C5—C61.410 (5)C3—H3B0.97
C6—C71.407 (4)C4—H4A0.97
C6—C111.412 (4)C4—H4B0.97
C7—C81.348 (5)C7—H7A0.93
C8—C91.422 (5)C8—H8A0.93
C9—C101.367 (4)C10—H10A0.93
C10—C111.403 (4)C12—H12A0.96
N3—C241.361 (4)C12—H12B0.96
N3—C141.381 (4)C12—H12C0.96
N4—C151.312 (5)C13—H13A0.96
N4—C161.450 (5)C13—H13B0.96
O2—C221.365 (4)C13—H13C0.96
O2—C261.420 (4)
Cl3—Zn1—Cl2107.88 (4)C19—C18—C17133.6 (3)
Cl3—Zn1—Cl1110.26 (4)C20—C19—C18135.7 (3)
Cl2—Zn1—Cl1113.37 (4)C20—C19—C24117.8 (3)
Cl3—Zn1—Cl4112.03 (4)C18—C19—C24106.5 (3)
Cl2—Zn1—Cl4109.20 (4)C21—C20—C19119.9 (3)
Cl1—Zn1—Cl4104.15 (4)C20—C21—C22120.9 (3)
C9—O1—C13117.1 (3)O2—C22—C23124.2 (3)
C11—N1—C1108.2 (2)O2—C22—C21113.9 (3)
C2—N2—C3123.8 (3)C23—C22—C21121.9 (3)
N1—C1—C5109.3 (3)C22—C23—C24116.4 (3)
N1—C1—C2127.8 (3)N3—C24—C23128.5 (3)
C5—C1—C2122.8 (3)N3—C24—C19108.4 (3)
N2—C2—C1117.6 (3)C23—C24—C19123.1 (3)
N2—C2—C12119.5 (3)C1—N1—H1A126
C1—C2—C12122.9 (3)C11—N1—H1A126
N2—C3—C4114.3 (3)C2—N2—H2A118
C5—C4—C3111.4 (3)C3—N2—H2A118
C1—C5—C6106.9 (3)N2—C3—H3A109
C1—C5—C4119.7 (3)N2—C3—H3B109
C6—C5—C4133.0 (3)C4—C3—H3A109
C7—C6—C5134.0 (3)C4—C3—H3B109
C7—C6—C11119.4 (3)H3A—C3—H3B108
C5—C6—C11106.7 (3)C3—C4—H4A109
C8—C7—C6118.6 (3)C3—C4—H4B109
C7—C8—C9121.4 (3)C5—C4—H4A109
O1—C9—C10124.6 (3)C5—C4—H4B109
O1—C9—C8113.3 (3)H4A—C4—H4B108
C10—C9—C8122.1 (3)C6—C7—H7A121
C9—C10—C11116.3 (3)C8—C7—H7A121
N1—C11—C10128.9 (3)C7—C8—H8A119
N1—C11—C6108.8 (3)C9—C8—H8A119
C10—C11—C6122.2 (3)C9—C10—H10A122
C24—N3—C14108.3 (3)C11—C10—H10A122
C15—N4—C16123.4 (3)C2—C12—H12A110
C22—O2—C26117.5 (3)C2—C12—H12B109
C18—C14—N3109.5 (3)C2—C12—H12C109
C18—C14—C15123.8 (3)H12A—C12—H12B109
N3—C14—C15126.5 (3)H12A—C12—H12C109
N4—C15—C14117.1 (3)H12B—C12—H12C109
N4—C15—C25120.0 (3)O1—C13—H13A109
C14—C15—C25122.9 (3)O1—C13—H13B109
C17—C16—N4116.7 (4)O1—C13—H13C109
C16—C17—C18113.0 (3)H13A—C13—H13B109
C14—C18—C19107.3 (3)H13A—C13—H13C109
C14—C18—C17119.0 (3)H13B—C13—H13C110
C13—O1—C9—C8−170.7 (3)C3—C4—C5—C6−161.5 (3)
C13—O1—C9—C1010.7 (4)C1—C5—C6—C7−178.5 (3)
C11—N1—C1—C2177.5 (3)C1—C5—C6—C111.1 (3)
C11—N1—C1—C52.0 (3)C4—C5—C6—C78.2 (6)
C1—N1—C11—C6−1.3 (3)C4—C5—C6—C11−172.2 (3)
C1—N1—C11—C10178.6 (3)C5—C6—C7—C8179.2 (3)
C3—N2—C2—C1−5.5 (5)C11—C6—C7—C8−0.4 (4)
C3—N2—C2—C12175.5 (3)C5—C6—C11—N10.1 (3)
C2—N2—C3—C429.2 (5)C5—C6—C11—C10−179.83
N1—C1—C2—N2176.8 (3)C7—C6—C11—N1179.8 (3)
N1—C1—C2—C12−4.2 (6)C7—C6—C11—C10−0.2 (4)
C5—C1—C2—N2−8.3 (5)C6—C7—C8—C90.9 (5)
C5—C1—C2—C12170.7 (3)C7—C8—C9—O1−179.7 (3)
N1—C1—C5—C4172.5 (3)C7—C8—C9—C10−1.1 (5)
N1—C1—C5—C6−1.9 (3)O1—C9—C10—C11179.0 (3)
C2—C1—C5—C4−3.3 (5)C8—C9—C10—C110.5 (4)
C2—C1—C5—C6−177.7 (3)C9—C10—C11—N1−179.8 (3)
N2—C3—C4—C5−36.8 (4)C9—C10—C11—C60.1 (4)
C3—C4—C5—C125.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.862.453.307 (3)171
N2—H2A···Cl1ii0.862.463.299 (3)166
N3—H3C···Cl30.862.333.183 (3)173
N4—H4C···Cl4iii0.862.443.287 (3)170

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2139).

References

  • Al-Allaf, T. A. K., Ayoub, M. T. & Rashan, L. J. (1990). J. Inorg. Biochem.38, 47–56. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferretti, V., Gilli, P. & Borea, P. A. (2004). Acta Cryst. B60, 481–489. [PubMed]
  • Ma, P.-H., Fan, Z.-F., Zhang, Y.-Q., Xiao, X. & Xue, S.-F. (2009). Acta Cryst. E65, m655. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  • Reimers, W., Guth, H. & Wang, Z.-T. (1984). Acta Cryst. C40, 977–978.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.
  • Wouters, J. (1997). Bull. Soc. Chim. Belg.106, 759–766.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography