PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o969.
Published online 2010 March 27. doi:  10.1107/S1600536810011165
PMCID: PMC2983945

1-[3-(4-Methoxy­phen­yl)-6-methyl-1,6-dihydro-1,2,4,5-tetra­zin-1-yl]propanone

Abstract

In the title compound, C13H16N4O2, the central tetra­zine ring adopts an unsymmetrical boat conformation with the two C atoms as flagpoles. This compound can be considered as having homoaromaticity.

Related literature

For the biological activity of 1,2,4,5-tetra­zine derivatives, see: Sauer (1996 [triangle]). For related structures, see: Jennison et al. (1986 [triangle]); Stam et al. (1982 [triangle]); Xu et al. (2010 [triangle]). For the structure–activity relationships of 1,6-dihydro-1,2,4,5-tetra­zine derivatives, see: Hu et al. (2004 [triangle], 2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o969-scheme1.jpg

Experimental

Crystal data

  • C13H16N4O2
  • M r = 260.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o969-efi1.jpg
  • a = 8.345 (2) Å
  • b = 8.4898 (19) Å
  • c = 10.245 (3) Å
  • α = 113.232 (6)°
  • β = 99.820 (15)°
  • γ = 93.268 (11)°
  • V = 651.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 93 K
  • 0.50 × 0.37 × 0.23 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • 6410 measured reflections
  • 2920 independent reflections
  • 2207 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.081
  • S = 1.00
  • 2920 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011165/ci5067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011165/ci5067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Science Foundation for Excellent Youth Scholars of the Department of Education of Zhejiang province and the Foundation of Taizhou Vocational and Technical College (grant No. 2010ZD08) for financial support.

supplementary crystallographic information

Comment

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996). Dihydro-1,2,4,5- tetrazine has four isomers, namely 1,2-, 1,4-, 1,6- and 3,6-dihydro-1,2,4,5- tetrazines. The 1,6-dihydro structures (Stam et al., 1982; Jennison et al., 1986) were found, by X-ray diffraction, to be homoaromatic. In continuation of our work on the structure-activity relationship of 1,6-dihydro-1,2,4,5-tetrazine derivatives (Hu et al., 2004,2005), we report here the crystal structure of the title compound (I) (Fig. 1).

In the tetrazine ring, atoms N1, N2, N3 and N4 are coplanar, while atoms C7 and C8 deviate from the plane by 0.239 (2) and 0.595 (2) Å, respectively. The N2/C7/N3 and N1/C8/N4 planes make dihedral angles of 21.0 (2)° and 42.2 (1)°, respectively, with the N1/N2/ N3/N4 plane, i.e. the tetrazine ring adopts an unsymmetrical boat conformation. The benzene ring make dihedral angle of 16.7 (1)° with the N1/N2/N3/N4 plane. Atom N1 is almost sp2 hybridized due to the angles around it add up to 360.0 (2)°. In keeping with similar situations in 3-phenyl-6-ethyl-1,6-dihydro- 1,2,4,5-tetrazine (Stam et al., 1982), N-(2-methylphenyl)-3-phenyl-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (Xu et al., 2010) and 1-acetyl-3,6-dimethyl-1,2,4,5-tetrazine (Jennison et al., 1986), it can be considered that the molecule is homoaromatic.

Experimental

3-(4-Methoxyphenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine (0.25 ml,3.1 mmol) were mixed. Propionyl chloride(3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting, 1,6-dihydro-1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC, dichloromethane system), evaporation of the chloroform, crude 1-propionyl-3-(4-methoxyphenyl)-6-methyl- 1,6-dihydro-1,2,4,5-tetrazine was obtained and purified by preparative thin-layer chromatography over silica gel GF254(2 mm) (dichloromethane-petroleum ether, 1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction (m.p. 340–342 K).1H NMR (CDCl3) δ p.p.m.: 8.10 (d,2H, J = 8.8 Hz), 7.03 (d,2H, J = 8.8 Hz), 6.84 (q,1H, J = 6.4 Hz), 3.89 (s,3H), 2.95–3.05(m,1H,CH2), 2.72–2.85(m,1H,CH2),1.20(t,3H, J = 7.6 Hz), 1.04 (d,3H, J = 6.4 Hz).

Refinement

H atoms were placed in calculated positions with N—H = 0.86 Å, C-H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Crystal data

C13H16N4O2Z = 2
Mr = 260.30F(000) = 276
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.345 (2) ÅCell parameters from 1846 reflections
b = 8.4898 (19) Åθ = 3.4–27.5°
c = 10.245 (3) ŵ = 0.09 mm1
α = 113.232 (6)°T = 93 K
β = 99.820 (15)°Prism, red
γ = 93.268 (11)°0.50 × 0.37 × 0.23 mm
V = 651.0 (3) Å3

Data collection

Rigaku AFC10/Saturn724+ diffractometer2207 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.022
graphiteθmax = 27.5°, θmin = 3.4°
Detector resolution: 28.5714 pixels mm-1h = −10→10
[var phi] and ω scansk = −11→11
6410 measured reflectionsl = −13→12
2920 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0282P)2 + 0.16P] where P = (Fo2 + 2Fc2)/3
2920 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.03435 (11)0.17376 (12)0.48191 (9)0.0240 (2)
O20.16763 (10)0.73207 (11)0.11227 (10)0.0240 (2)
N10.33360 (12)0.55086 (13)0.15664 (11)0.0189 (2)
N20.47200 (12)0.53199 (13)0.23910 (11)0.0186 (2)
N30.47565 (13)0.27926 (13)0.02813 (11)0.0209 (2)
N40.34190 (13)0.29167 (14)−0.04264 (11)0.0224 (2)
C10.69924 (15)0.41266 (16)0.41273 (13)0.0193 (3)
H10.64250.50410.46310.023*
C20.82340 (15)0.36341 (16)0.49081 (13)0.0198 (3)
H20.85120.42070.59380.024*
C30.90723 (14)0.22979 (16)0.41785 (13)0.0179 (3)
C40.86288 (15)0.14452 (16)0.26693 (13)0.0213 (3)
H40.91830.05160.21690.026*
C50.73919 (15)0.19411 (16)0.18974 (13)0.0198 (3)
H50.71020.13510.08690.024*
C60.65589 (14)0.33049 (15)0.26145 (13)0.0166 (3)
C70.52322 (15)0.38258 (16)0.18025 (13)0.0174 (3)
C80.23071 (15)0.39564 (16)0.04682 (13)0.0197 (3)
H80.14750.4295−0.01630.024*
C90.14232 (16)0.29206 (17)0.11103 (14)0.0229 (3)
H9A0.22130.27380.18460.027*
H9B0.09080.17980.03390.027*
H9C0.05770.35560.15610.027*
C100.29499 (15)0.71638 (16)0.18095 (13)0.0188 (3)
C110.41530 (15)0.86447 (16)0.29536 (13)0.0211 (3)
H11A0.52560.85460.27200.025*
H11B0.42150.85830.39060.025*
C120.36603 (17)1.03756 (17)0.30564 (15)0.0267 (3)
H12A0.35731.04290.21090.032*
H12B0.44921.13110.37820.032*
H12C0.25981.05060.33450.032*
C131.07827 (16)0.24669 (18)0.63702 (14)0.0246 (3)
H13A1.10830.37220.67370.030*
H13B1.17190.19570.66800.030*
H13C0.98480.22220.67570.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0227 (5)0.0325 (5)0.0196 (5)0.0115 (4)0.0026 (4)0.0134 (4)
O20.0192 (5)0.0280 (5)0.0261 (5)0.0064 (4)0.0008 (4)0.0134 (4)
N10.0169 (5)0.0206 (5)0.0185 (5)0.0019 (4)−0.0015 (4)0.0094 (4)
N20.0166 (5)0.0217 (5)0.0192 (5)0.0028 (4)0.0004 (4)0.0114 (4)
N30.0206 (6)0.0244 (6)0.0174 (5)0.0031 (4)0.0013 (4)0.0094 (5)
N40.0210 (6)0.0256 (6)0.0195 (5)0.0030 (5)0.0004 (5)0.0096 (5)
C10.0184 (6)0.0202 (6)0.0187 (6)0.0047 (5)0.0037 (5)0.0073 (5)
C20.0205 (6)0.0224 (6)0.0151 (6)0.0019 (5)0.0014 (5)0.0073 (5)
C30.0147 (6)0.0219 (6)0.0200 (6)0.0027 (5)0.0020 (5)0.0123 (5)
C40.0239 (7)0.0220 (6)0.0199 (6)0.0088 (5)0.0065 (5)0.0091 (5)
C50.0227 (7)0.0210 (6)0.0144 (6)0.0033 (5)0.0022 (5)0.0066 (5)
C60.0147 (6)0.0182 (6)0.0181 (6)0.0001 (5)0.0017 (5)0.0096 (5)
C70.0157 (6)0.0207 (6)0.0169 (6)0.0007 (5)0.0026 (5)0.0094 (5)
C80.0173 (6)0.0218 (6)0.0180 (6)0.0017 (5)−0.0015 (5)0.0083 (5)
C90.0200 (6)0.0238 (7)0.0237 (7)0.0003 (5)0.0008 (5)0.0103 (5)
C100.0188 (6)0.0232 (6)0.0184 (6)0.0053 (5)0.0057 (5)0.0118 (5)
C110.0212 (7)0.0218 (7)0.0209 (7)0.0048 (5)0.0024 (5)0.0101 (5)
C120.0261 (7)0.0213 (7)0.0332 (8)0.0049 (5)0.0047 (6)0.0120 (6)
C130.0222 (7)0.0329 (7)0.0200 (7)0.0043 (6)−0.0006 (5)0.0141 (6)

Geometric parameters (Å, °)

O1—C31.3596 (14)C5—C61.3995 (17)
O1—C131.4291 (15)C5—H50.95
O2—C101.2155 (14)C6—C71.4647 (16)
N1—N21.3669 (14)C8—C91.5160 (17)
N1—C101.3941 (16)C8—H81.00
N1—C81.4531 (15)C9—H9A0.98
N2—C71.3044 (16)C9—H9B0.98
N3—N41.2571 (14)C9—H9C0.98
N3—C71.4236 (16)C10—C111.5015 (17)
N4—C81.4917 (16)C11—C121.5169 (17)
C1—C21.3852 (17)C11—H11A0.99
C1—C61.3952 (17)C11—H11B0.99
C1—H10.95C12—H12A0.98
C2—C31.3911 (17)C12—H12B0.98
C2—H20.95C12—H12C0.98
C3—C41.3939 (17)C13—H13A0.98
C4—C51.3791 (17)C13—H13B0.98
C4—H40.95C13—H13C0.98
C3—O1—C13118.23 (10)N1—C8—H8108.9
N2—N1—C10119.47 (10)N4—C8—H8108.9
N2—N1—C8118.20 (10)C9—C8—H8108.9
C10—N1—C8122.32 (10)C8—C9—H9A109.5
C7—N2—N1113.70 (10)C8—C9—H9B109.5
N4—N3—C7120.02 (11)H9A—C9—H9B109.5
N3—N4—C8115.25 (10)C8—C9—H9C109.5
C2—C1—C6121.25 (12)H9A—C9—H9C109.5
C2—C1—H1119.4H9B—C9—H9C109.5
C6—C1—H1119.4O2—C10—N1119.15 (11)
C1—C2—C3119.76 (11)O2—C10—C11124.57 (12)
C1—C2—H2120.1N1—C10—C11116.27 (10)
C3—C2—H2120.1C10—C11—C12111.53 (11)
O1—C3—C2125.16 (11)C10—C11—H11A109.3
O1—C3—C4115.33 (11)C12—C11—H11A109.3
C2—C3—C4119.50 (11)C10—C11—H11B109.3
C5—C4—C3120.48 (12)C12—C11—H11B109.3
C5—C4—H4119.8H11A—C11—H11B108.0
C3—C4—H4119.8C11—C12—H12A109.5
C4—C5—C6120.64 (11)C11—C12—H12B109.5
C4—C5—H5119.7H12A—C12—H12B109.5
C6—C5—H5119.7C11—C12—H12C109.5
C1—C6—C5118.35 (11)H12A—C12—H12C109.5
C1—C6—C7120.72 (11)H12B—C12—H12C109.5
C5—C6—C7120.91 (11)O1—C13—H13A109.5
N2—C7—N3121.12 (11)O1—C13—H13B109.5
N2—C7—C6121.13 (11)H13A—C13—H13B109.5
N3—C7—C6116.68 (11)O1—C13—H13C109.5
N1—C8—N4106.07 (9)H13A—C13—H13C109.5
N1—C8—C9112.98 (10)H13B—C13—H13C109.5
N4—C8—C9110.99 (10)
C10—N1—N2—C7−159.83 (10)N4—N3—C7—C6164.47 (10)
C8—N1—N2—C720.73 (14)C1—C6—C7—N218.43 (17)
C7—N3—N4—C8−9.80 (16)C5—C6—C7—N2−163.36 (11)
C6—C1—C2—C30.09 (18)C1—C6—C7—N3−173.30 (11)
C13—O1—C3—C25.43 (17)C5—C6—C7—N34.91 (16)
C13—O1—C3—C4−175.44 (11)N2—N1—C8—N4−52.33 (13)
C1—C2—C3—O1177.78 (11)C10—N1—C8—N4128.25 (11)
C1—C2—C3—C4−1.32 (18)N2—N1—C8—C969.47 (13)
O1—C3—C4—C5−177.85 (11)C10—N1—C8—C9−109.95 (13)
C2—C3—C4—C51.33 (18)N3—N4—C8—N145.04 (13)
C3—C4—C5—C6−0.12 (18)N3—N4—C8—C9−78.02 (13)
C2—C1—C6—C51.10 (17)N2—N1—C10—O2−176.38 (11)
C2—C1—C6—C7179.36 (11)C8—N1—C10—O23.04 (17)
C4—C5—C6—C1−1.09 (17)N2—N1—C10—C112.16 (16)
C4—C5—C6—C7−179.34 (11)C8—N1—C10—C11−178.43 (10)
N1—N2—C7—N320.73 (16)O2—C10—C11—C12−5.10 (17)
N1—N2—C7—C6−171.53 (10)N1—C10—C11—C12176.46 (11)
N4—N3—C7—N2−27.26 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5067).

References

  • Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett.14, 1177–1181. [PubMed]
  • Hu, W. X., Shi, H. B., Yuan, Q. & Sun, Y. Q. (2005). J. Chem. Res. pp. 291–293.
  • Jennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem.51, 3043–3051.
  • Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem.47, 2856–2858.
  • Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem.30, 260–265.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography