PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o848.
Published online 2010 March 17. doi:  10.1107/S1600536810008974
PMCID: PMC2983943

2-Chloro-5-nitro­pyridine

Abstract

The non-H atoms of the title compound, C5H3ClN2O2, almost lie in a common plane (r.m.s. deviation = 0.090 Å). In the crystal, adjacent mol­ecules feature a short Cl(...)O contact [3.068 (4) Å], forming a chain; these chains are consolidated into a layer structure by non-classical C—H(...)O inter­actions.

Related literature

For the mechanism of the reaction between 2-chloro-5-nitro­pyridine and aryl­oxide ions, see: El-Bardan (1999 [triangle]); Haynes & Pett (2007 [triangle]); Zeller et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o848-scheme1.jpg

Experimental

Crystal data

  • C5H3ClN2O2
  • M r = 158.54
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o848-efi1.jpg
  • a = 3.7599 (8) Å
  • b = 5.8641 (13) Å
  • c = 7.0189 (15) Å
  • α = 84.687 (3)°
  • β = 89.668 (3)°
  • γ = 76.020 (3)°
  • V = 149.50 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 100 K
  • 0.45 × 0.15 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.786, T max = 0.983
  • 1379 measured reflections
  • 1114 independent reflections
  • 1071 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.143
  • S = 1.17
  • 1114 reflections
  • 91 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.59 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 449 Friedel pairs
  • Flack parameter: −0.05 (14)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008974/bt5214sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008974/bt5214Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We have synthesized some nitropyridyl aryl ethers by the reaction of the aryloxide ion with the chlorine-substituted nitropyridine. The mechanism of this reaction has been reported (El-Bardan, 1999). With 2-chloro-5-nitropyridine, additional hydroxide base should not be used as the compound undergoes ring opening (Haynes & Pett, 2007; Zeller et al., 2007).

2-Chloro-5-nitropyridine (Scheme I, Fig. 1) is a flat molecule; the non-hydrogen atoms all lie in a common plane (r.m.s. deviation 0.090 Å). Adjacent molecules interact by a Cl···O contact [3.068 (4) Å] to form a chain. The chains are consolidated into a layer structure by a non-classical C–H···O interaction; this interaction involves the second oxygen atom of the nitro group.

Experimental

2-Chloro-5-nitropyridine as supplied by Aldrich Chemical Company is crystalline.

Refinement

H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The checking program PLATON detects some pseudo symmetry. However, as the Flack parameter refined to nearly zero, the non-centric space group must be the correct one. Nevertheless, an attempt was made to treat the structure as a whole-molecule-disordered structure but this gave a model with bad bond dimensions.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of 2-chloro-5-nitropyridine at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C5H3ClN2O2Z = 1
Mr = 158.54F(000) = 80
Triclinic, P1Dx = 1.761 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.7599 (8) ÅCell parameters from 637 reflections
b = 5.8641 (13) Åθ = 2.9–28.2°
c = 7.0189 (15) ŵ = 0.56 mm1
α = 84.687 (3)°T = 100 K
β = 89.668 (3)°Plate, colorless
γ = 76.020 (3)°0.45 × 0.15 × 0.03 mm
V = 149.50 (6) Å3

Data collection

Bruker SMART APEX diffractometer1114 independent reflections
Radiation source: fine-focus sealed tube1071 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→4
Tmin = 0.786, Tmax = 0.983k = −7→7
1379 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.143w = 1/[σ2(Fo2) + (0.070P)2 + 0.2047P] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
1114 reflectionsΔρmax = 0.63 e Å3
91 parametersΔρmin = −0.59 e Å3
3 restraintsAbsolute structure: Flack (1983), 449 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.05 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.5000 (2)0.50003 (18)0.49998 (17)0.0193 (3)
O10.8088 (11)0.9486 (7)1.2731 (6)0.0254 (9)
O20.3611 (12)1.2366 (7)1.1607 (7)0.0259 (10)
N10.7126 (12)0.5558 (8)0.8407 (7)0.0161 (10)
N20.5729 (13)1.0408 (10)1.1526 (7)0.0170 (11)
C10.5156 (14)0.6688 (11)0.6894 (8)0.0180 (11)
C20.3197 (14)0.9038 (9)0.6723 (8)0.0137 (11)
H20.18370.97350.55920.016*
C30.3320 (17)1.0316 (12)0.8277 (10)0.0182 (13)
H30.20171.19220.82600.022*
C40.5415 (15)0.9162 (10)0.9860 (8)0.0146 (11)
C50.7254 (14)0.6800 (10)0.9887 (8)0.0173 (11)
H50.86440.60501.09950.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0220 (6)0.0165 (6)0.0198 (6)−0.0033 (4)−0.0008 (4)−0.0072 (4)
O10.028 (2)0.024 (2)0.023 (2)−0.0037 (17)−0.0085 (18)−0.0027 (18)
O20.034 (2)0.015 (2)0.024 (2)0.0062 (16)−0.0050 (17)−0.0097 (17)
N10.015 (2)0.014 (2)0.019 (2)−0.0011 (18)−0.0014 (18)−0.0041 (18)
N20.018 (2)0.016 (3)0.018 (3)−0.005 (2)0.002 (2)−0.006 (2)
C10.016 (2)0.019 (3)0.020 (3)−0.004 (2)0.003 (2)−0.005 (2)
C20.013 (2)0.014 (2)0.013 (3)0.001 (2)−0.0043 (18)0.001 (2)
C30.017 (3)0.016 (3)0.021 (3)−0.002 (2)0.000 (2)−0.004 (2)
C40.015 (2)0.013 (2)0.016 (3)−0.003 (2)0.0011 (19)−0.005 (2)
C50.017 (2)0.015 (3)0.018 (3)−0.003 (2)0.001 (2)−0.003 (2)

Geometric parameters (Å, °)

Cl1—C11.739 (6)C2—C31.387 (9)
O1—N21.219 (7)C2—H20.9500
O2—N21.235 (7)C3—C41.387 (9)
N1—C11.325 (7)C3—H30.9500
N1—C51.330 (7)C4—C51.389 (8)
N2—C41.455 (8)C5—H50.9500
C1—C21.391 (7)
C1—N1—C5116.7 (5)C2—C3—C4117.6 (6)
O1—N2—O2124.1 (6)C2—C3—H3121.2
O1—N2—C4118.4 (6)C4—C3—H3121.2
O2—N2—C4117.4 (5)C3—C4—C5120.8 (5)
N1—C1—C2126.0 (5)C3—C4—N2120.5 (5)
N1—C1—Cl1115.4 (4)C5—C4—N2118.7 (5)
C2—C1—Cl1118.6 (4)N1—C5—C4122.0 (5)
C3—C2—C1117.0 (5)N1—C5—H5119.0
C3—C2—H2121.5C4—C5—H5119.0
C1—C2—H2121.5
C5—N1—C1—C2−0.6 (7)O1—N2—C4—C3−166.8 (5)
C5—N1—C1—Cl1−179.2 (4)O2—N2—C4—C311.9 (9)
N1—C1—C2—C30.1 (8)O1—N2—C4—C513.1 (8)
Cl1—C1—C2—C3178.6 (4)O2—N2—C4—C5−168.1 (5)
C1—C2—C3—C40.8 (8)C1—N1—C5—C40.1 (8)
C2—C3—C4—C5−1.2 (8)C3—C4—C5—N10.8 (8)
C2—C3—C4—N2178.7 (4)N2—C4—C5—N1−179.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.361 (7)151

Symmetry codes: (i) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5214).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • El-Bardan, A. A. (1999). J. Phys. Org. Chem.13, 347–353.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Haynes, L. R. W. & Pett, V. B. (2007). J. Org. Chem.72, 633–635. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.
  • Zeller, M., Pett, V. B. & Haynes, L. R. W. (2007). Acta Cryst. C63, o343–o346. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography