PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o883.
Published online 2010 March 20. doi:  10.1107/S1600536810009773
PMCID: PMC2983940

(E)-2-[1-(3-Amino-4-chloro­phenyl­imino)eth­yl]-4-bromo­phenol

Abstract

The title Schiff base compound, C14H12BrClN2O, exists in an E configuration with respect to the central C=N double bond. The amino group adopts a pyramidal configuration. The dihedral angle between the two benzene rings is 76.88 (10)° and an intra­molecular O—H(...)N hydrogen bond forms a six-membered ring, generating an S(6) ring motif. In the crystal structure, mol­ecules are linked into chains along [010] via N—H(...)O hydrogen bonds. The presence of π–π inter­actions [centroid–centroid distance = 3.6244 (12) Å] further stabilizes the crystal structure.

Related literature

For the biological activity and corrosion inhibition properties of Schiff base derivatives, see: Azam et al. (2007 [triangle]); Sauri et al. (2009 [triangle]). For a related structure, see: Yamin et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o883-scheme1.jpg

Experimental

Crystal data

  • C14H12BrClN2O
  • M r = 339.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o883-efi1.jpg
  • a = 10.2469 (1) Å
  • b = 8.7672 (1) Å
  • c = 15.7180 (2) Å
  • β = 107.065 (1)°
  • V = 1349.88 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.24 mm−1
  • T = 296 K
  • 0.24 × 0.22 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.509, T max = 0.726
  • 14782 measured reflections
  • 3925 independent reflections
  • 2420 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.077
  • S = 1.00
  • 3925 reflections
  • 185 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009773/tk2641sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009773/tk2641Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HB, SNAB and KK wish to thank both Universiti Teknologi MARA and Universiti Sains Malaysia (USM) for research facilities, and the Malaysian Ministry of Higher Education for the research grant FRGS UiTM 5/3/FST/(12/2008). HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Schiff bases have been studied extensively due to their intriguing biological activities, such as antimicrobial (Azam et al., 2007), and chemical properties as well as corrosion inhibition (Sauri et al., 2009). The structure of a Schiff base synthesized from 1,3-diamino-4-chlorobenzene and 3-methoxysalicylaldehyde in 1:2 ratio has been reported by Yamin et al. (2009). The present Schiff base compound, (I), is also derived from 1,3-diamino-4-chlorobenzene but from an analogous reaction with 5-bromo-2-hydroxyacetophenone.

Compound, (I), exists in an E configuration with respect to the central C7═N1 double bond (Fig. 1). The dihedral angle between the two benzene rings is 76.88 (10)°. The amino group (N2) adopts a pyramidal configuration. An intramolecular O1—H1O1···N1 hydrogen bond forms a six-membered ring, generating an S(6) ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are linked into one-dimensional chains along [010] via intermolecular N2—H1N2···O1 hydrogen bonds (Fig. 2, Table 1). The Cg1···Cg2 interaction of 3.6244 (12) Å; x, 5/2-y, 1/2+z, further stabilizes the crystal structure (Cg1 and Cg2 are centroids of benzene rings C8–C13 and C1–C6, respectively).

Experimental

Compound (I) was synthesized by heating 1,3-diamino-4-chlorobenzene (0.3565 g, 2.5 mmol) with 5-bromo-2-hydroxyacetophenone (0.998 g, 5 mmol) in ethanol for 24 h. The solvent was then evaporated in-vacuo and the oily product was recrystallized from acetone to afford yellow single crystals. Yield 12%. Melting point 448-452 K.

Refinement

The H1O1, H1N2 and H2N2 hydrogen atoms were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). The rotating group model was applied for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
A view down the a axis of the unit cell of (I) showing molecules linked into one-dimensional chains along [010]. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C14H12BrClN2OF(000) = 680
Mr = 339.62Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4343 reflections
a = 10.2469 (1) Åθ = 2.7–28.5°
b = 8.7672 (1) ŵ = 3.24 mm1
c = 15.7180 (2) ÅT = 296 K
β = 107.065 (1)°Block, yellow
V = 1349.88 (3) Å30.24 × 0.22 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3925 independent reflections
Radiation source: fine-focus sealed tube2420 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.509, Tmax = 0.726k = −12→9
14782 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0299P)2 + 0.2742P] where P = (Fo2 + 2Fc2)/3
3925 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.82408 (3)0.92283 (3)0.233924 (15)0.05982 (11)
Cl10.55171 (6)1.10458 (7)0.92352 (4)0.05352 (17)
O10.92270 (16)1.31628 (18)0.55948 (10)0.0499 (4)
N10.76555 (17)1.1434 (2)0.61354 (10)0.0391 (4)
N20.7688 (2)0.9064 (2)0.89348 (14)0.0503 (5)
C10.9012 (2)1.2211 (2)0.48934 (12)0.0361 (5)
C20.9613 (2)1.2577 (3)0.42328 (13)0.0415 (5)
H2A1.01681.34350.42980.050*
C30.9398 (2)1.1686 (3)0.34850 (13)0.0411 (5)
H3A0.97951.19440.30430.049*
C40.8588 (2)1.0407 (2)0.33972 (12)0.0376 (5)
C50.7997 (2)1.0004 (2)0.40428 (13)0.0377 (5)
H5A0.74620.91300.39710.045*
C60.81908 (19)1.0898 (2)0.48087 (12)0.0325 (4)
C70.75211 (19)1.0490 (2)0.54920 (13)0.0341 (5)
C80.7052 (2)1.1213 (2)0.68396 (12)0.0349 (5)
C90.7605 (2)1.0181 (2)0.75146 (13)0.0361 (5)
H9A0.83020.95340.74710.043*
C100.71348 (19)1.0095 (2)0.82588 (12)0.0343 (5)
C110.6078 (2)1.1068 (2)0.82884 (13)0.0353 (5)
C120.5507 (2)1.2078 (3)0.76140 (14)0.0457 (5)
H12A0.47901.27030.76480.055*
C130.6000 (2)1.2166 (3)0.68838 (14)0.0442 (5)
H13A0.56261.28570.64290.053*
C140.6714 (2)0.9042 (2)0.53932 (15)0.0497 (6)
H14A0.62920.89730.58620.075*
H14B0.73110.81860.54260.075*
H14C0.60220.90400.48280.075*
H1O10.875 (3)1.280 (3)0.5918 (17)0.090 (10)*
H1N20.845 (3)0.875 (3)0.8945 (15)0.056 (8)*
H2N20.760 (3)0.933 (3)0.9416 (18)0.068 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0789 (2)0.0630 (2)0.04600 (15)0.00123 (13)0.03142 (13)−0.01291 (12)
Cl10.0612 (4)0.0630 (4)0.0472 (3)0.0015 (3)0.0328 (3)−0.0020 (3)
O10.0632 (10)0.0497 (10)0.0423 (9)−0.0224 (8)0.0241 (8)−0.0097 (7)
N10.0511 (11)0.0378 (10)0.0321 (9)−0.0088 (8)0.0180 (8)−0.0014 (8)
N20.0585 (14)0.0534 (14)0.0435 (12)0.0162 (11)0.0222 (11)0.0160 (10)
C10.0383 (11)0.0381 (13)0.0314 (10)−0.0005 (9)0.0095 (9)0.0032 (9)
C20.0408 (12)0.0428 (13)0.0425 (12)−0.0045 (10)0.0149 (10)0.0046 (10)
C30.0418 (12)0.0469 (14)0.0400 (11)0.0060 (11)0.0206 (10)0.0106 (10)
C40.0426 (11)0.0396 (13)0.0320 (10)0.0090 (10)0.0131 (9)0.0022 (9)
C50.0435 (12)0.0327 (12)0.0391 (11)0.0000 (10)0.0157 (10)0.0005 (9)
C60.0348 (10)0.0327 (12)0.0306 (10)0.0014 (9)0.0106 (8)0.0037 (9)
C70.0378 (11)0.0323 (12)0.0328 (10)−0.0004 (9)0.0113 (9)0.0033 (9)
C80.0420 (11)0.0335 (12)0.0303 (10)−0.0072 (9)0.0123 (9)−0.0034 (9)
C90.0398 (11)0.0340 (12)0.0381 (11)0.0030 (9)0.0169 (9)−0.0008 (9)
C100.0388 (11)0.0318 (12)0.0317 (10)−0.0037 (9)0.0094 (9)0.0002 (9)
C110.0401 (11)0.0370 (12)0.0329 (10)−0.0029 (9)0.0173 (9)−0.0036 (9)
C120.0457 (12)0.0461 (14)0.0489 (13)0.0087 (11)0.0195 (11)0.0025 (11)
C130.0499 (13)0.0445 (14)0.0377 (11)0.0061 (11)0.0121 (10)0.0082 (10)
C140.0631 (15)0.0461 (15)0.0480 (13)−0.0175 (11)0.0288 (11)−0.0101 (11)

Geometric parameters (Å, °)

Br1—C41.900 (2)C5—C61.401 (3)
Cl1—C111.7458 (18)C5—H5A0.9300
O1—C11.348 (2)C6—C71.478 (2)
O1—H1O10.86 (3)C7—C141.498 (3)
N1—C71.282 (2)C8—C131.382 (3)
N1—C81.431 (2)C8—C91.383 (3)
N2—C101.384 (3)C9—C101.392 (2)
N2—H1N20.82 (3)C9—H9A0.9300
N2—H2N20.82 (3)C10—C111.390 (3)
C1—C21.392 (3)C11—C121.373 (3)
C1—C61.409 (3)C12—C131.385 (3)
C2—C31.374 (3)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.378 (3)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.372 (3)C14—H14C0.9600
C1—O1—H1O1105.6 (19)C6—C7—C14119.31 (17)
C7—N1—C8123.50 (17)C13—C8—C9120.47 (17)
C10—N2—H1N2114.0 (17)C13—C8—N1118.56 (18)
C10—N2—H2N2112.9 (18)C9—C8—N1120.61 (18)
H1N2—N2—H2N2116 (2)C8—C9—C10120.98 (18)
O1—C1—C2117.72 (19)C8—C9—H9A119.5
O1—C1—C6122.22 (17)C10—C9—H9A119.5
C2—C1—C6120.05 (19)N2—C10—C11121.52 (18)
C3—C2—C1120.8 (2)N2—C10—C9121.06 (19)
C3—C2—H2A119.6C11—C10—C9117.42 (18)
C1—C2—H2A119.6C12—C11—C10121.97 (17)
C2—C3—C4119.29 (18)C12—C11—Cl1119.54 (15)
C2—C3—H3A120.4C10—C11—Cl1118.44 (15)
C4—C3—H3A120.4C11—C12—C13119.95 (19)
C5—C4—C3121.26 (19)C11—C12—H12A120.0
C5—C4—Br1119.84 (16)C13—C12—H12A120.0
C3—C4—Br1118.87 (14)C8—C13—C12119.2 (2)
C4—C5—C6120.66 (19)C8—C13—H13A120.4
C4—C5—H5A119.7C12—C13—H13A120.4
C6—C5—H5A119.7C7—C14—H14A109.5
C5—C6—C1117.94 (17)C7—C14—H14B109.5
C5—C6—C7120.68 (18)H14A—C14—H14B109.5
C1—C6—C7121.36 (17)C7—C14—H14C109.5
N1—C7—C6116.84 (17)H14A—C14—H14C109.5
N1—C7—C14123.84 (17)H14B—C14—H14C109.5
O1—C1—C2—C3−177.75 (18)C5—C6—C7—C144.6 (3)
C6—C1—C2—C31.2 (3)C1—C6—C7—C14−177.06 (19)
C1—C2—C3—C4−0.8 (3)C7—N1—C8—C13−110.9 (2)
C2—C3—C4—C5−0.2 (3)C7—N1—C8—C976.0 (3)
C2—C3—C4—Br1177.57 (15)C13—C8—C9—C10−1.2 (3)
C3—C4—C5—C60.6 (3)N1—C8—C9—C10171.82 (18)
Br1—C4—C5—C6−177.08 (14)C8—C9—C10—N2−180.0 (2)
C4—C5—C6—C1−0.2 (3)C8—C9—C10—C111.0 (3)
C4—C5—C6—C7178.20 (18)N2—C10—C11—C12−178.9 (2)
O1—C1—C6—C5178.19 (18)C9—C10—C11—C120.2 (3)
C2—C1—C6—C5−0.7 (3)N2—C10—C11—Cl13.7 (3)
O1—C1—C6—C7−0.2 (3)C9—C10—C11—Cl1−177.24 (15)
C2—C1—C6—C7−179.09 (18)C10—C11—C12—C13−1.1 (3)
C8—N1—C7—C6179.02 (17)Cl1—C11—C12—C13176.27 (17)
C8—N1—C7—C140.2 (3)C9—C8—C13—C120.2 (3)
C5—C6—C7—N1−174.25 (18)N1—C8—C13—C12−172.91 (19)
C1—C6—C7—N14.1 (3)C11—C12—C13—C80.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.86 (3)1.74 (3)2.533 (2)151 (3)
N2—H1N2···O1i0.82 (3)2.33 (3)3.129 (3)163 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2641).

References

  • Azam, F., Singh, S., Khokhra, S. L. & Prakash, O. (2007). J. Zhejiang Univ. Sci. B, 8, 446–452. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sauri, A. S. M., Kassim, K., Bahron, H., Yahya, M. Z. A. & Harun, M. K. (2009). Mater. Res. Innovations, 13, 305–308.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yamin, B. M., Bakar, S. N. A., Kassim, K. & Bahron, H. (2009). Acta Cryst. E65, o2573. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography