PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o867.
Published online 2010 March 20. doi:  10.1107/S1600536810009426
PMCID: PMC2983939

(E)-5-Benzyl-1-methyl-N-nitro-1,3,5-triazinan-2-imine

Abstract

In the title compound, C11H15N5O2, the 1,3,5-triazine ring exhibits a half-chair conformation. An intra­molecular N—H(...)O inter­action occurs. In the crystal structure, mol­ecules are connected by inter­molecular C—H(...)O and N—H(...)N hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For the synthesis of the title compound, see: Ebihara et al. (1998 [triangle]). For related structures, see: Hu et al. (2008 [triangle]); Zhao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o867-scheme1.jpg

Experimental

Crystal data

  • C11H15N5O2
  • M r = 249.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o867-efi1.jpg
  • a = 12.293 (3) Å
  • b = 6.7769 (14) Å
  • c = 14.858 (3) Å
  • β = 107.36 (3)°
  • V = 1181.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.45 × 0.13 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.956, T max = 0.990
  • 10812 measured reflections
  • 2697 independent reflections
  • 2215 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.141
  • S = 1.15
  • 2697 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009426/is2529sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009426/is2529Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound was synthesized as an intermediate for the synthesis of clothianidin (Ebihara et al., 1998). We report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Hu et al., 2008). The 1,3,5-triazine ring (C1/C3/C4/N1—N3) exhibits a half-chair conformation. The crystal structure is stabilized by intermolecular C–H···O and N–H···N hydrogen bonds.

Experimental

1-Methyl-2-nitroguanidine 1.18 g (10 mmol) and 2.5 g formaldehyde (concentration 36%, 30 mmol) was dissolved in 20 ml ethanol, then phenylmethanamine (10 mmol) was added dropwise during 30 min at 30-40 °C. After this addition, the reaction mixture was heated with stirring for three hours at 30-40 °C. The mixture was cooled to room temperature and filtered to afford title compound 2.39 g (yield 96%). Single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol at room temperature.

Refinement

All H atoms were placed in calculated positions, with C–H = 0.93-0.97 Å and N–H = 0.86 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C, N) for aryl, methylene and N-bounded H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C11H15N5O2F(000) = 528
Mr = 249.28Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2501 reflections
a = 12.293 (3) Åθ = 2.3–25.1°
b = 6.7769 (14) ŵ = 0.10 mm1
c = 14.858 (3) ÅT = 293 K
β = 107.36 (3)°Needle, colorless
V = 1181.5 (4) Å30.45 × 0.13 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer2697 independent reflections
Radiation source: Rotating Anode2215 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −15→15
Tmin = 0.956, Tmax = 0.990k = −8→8
10812 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.141w = 1/[σ2(Fo2) + (0.0641P)2 + 0.4408P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2697 reflectionsΔρmax = 0.33 e Å3
164 parametersΔρmin = −0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.08476 (12)0.2664 (2)0.32912 (13)0.0648 (5)
O2−0.20472 (10)0.4688 (2)0.23990 (9)0.0491 (4)
N10.13187 (12)0.3877 (2)0.34487 (10)0.0396 (4)
H1A0.09460.29660.30810.048*
N20.13204 (11)0.69132 (19)0.41305 (9)0.0337 (3)
N30.29652 (11)0.4822 (2)0.47169 (9)0.0324 (3)
N4−0.03718 (11)0.5836 (2)0.31457 (11)0.0399 (4)
N5−0.10875 (11)0.4321 (2)0.29433 (9)0.0342 (3)
C10.07548 (13)0.5462 (2)0.35840 (10)0.0320 (3)
C20.07568 (15)0.8650 (3)0.43518 (14)0.0446 (4)
H2A−0.00530.85130.40840.067*
H2B0.10110.97990.40940.067*
H2C0.09400.87860.50240.067*
C30.25803 (13)0.6801 (2)0.44754 (12)0.0379 (4)
H3A0.28930.72880.39910.046*
H3B0.28580.76390.50250.046*
C40.25463 (13)0.3596 (3)0.38930 (11)0.0354 (4)
H4B0.26940.22220.40710.043*
H4C0.29510.39130.34430.043*
C50.26964 (14)0.4064 (3)0.55497 (11)0.0370 (4)
H5A0.18890.37650.53810.044*
H5B0.28550.50830.60300.044*
C60.33636 (12)0.2241 (2)0.59520 (10)0.0305 (3)
C70.29232 (14)0.0894 (3)0.64553 (11)0.0366 (4)
H7A0.22000.10990.65160.044*
C80.35422 (16)−0.0750 (3)0.68681 (12)0.0420 (4)
H8A0.3239−0.16320.72090.050*
C90.46112 (16)−0.1076 (3)0.67726 (12)0.0426 (4)
H9A0.5029−0.21810.70460.051*
C100.50547 (14)0.0239 (3)0.62723 (12)0.0426 (4)
H10A0.57750.00180.62090.051*
C110.44426 (13)0.1892 (3)0.58611 (11)0.0376 (4)
H11A0.47530.27700.55240.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0479 (8)0.0396 (8)0.1065 (13)−0.0004 (6)0.0227 (8)0.0232 (8)
O20.0311 (6)0.0622 (9)0.0465 (7)−0.0060 (6)0.0002 (5)−0.0005 (6)
N10.0354 (7)0.0328 (7)0.0410 (8)0.0066 (6)−0.0033 (6)−0.0094 (6)
N20.0310 (7)0.0272 (7)0.0375 (7)0.0028 (5)0.0022 (5)−0.0029 (5)
N30.0301 (6)0.0355 (7)0.0283 (6)0.0030 (5)0.0038 (5)0.0022 (5)
N40.0302 (7)0.0320 (7)0.0485 (8)−0.0010 (6)−0.0020 (6)0.0041 (6)
N50.0324 (7)0.0367 (7)0.0341 (7)−0.0014 (6)0.0106 (5)0.0000 (5)
C10.0325 (7)0.0290 (7)0.0297 (7)0.0025 (6)0.0019 (6)0.0016 (6)
C20.0442 (9)0.0344 (9)0.0510 (10)0.0073 (7)0.0079 (8)−0.0097 (7)
C30.0306 (8)0.0341 (8)0.0423 (9)−0.0016 (6)0.0005 (6)0.0018 (7)
C40.0336 (8)0.0413 (9)0.0296 (7)0.0088 (7)0.0065 (6)−0.0003 (6)
C50.0372 (8)0.0441 (9)0.0301 (8)0.0096 (7)0.0105 (6)0.0018 (7)
C60.0297 (7)0.0363 (8)0.0231 (6)0.0011 (6)0.0042 (5)−0.0020 (6)
C70.0329 (7)0.0467 (9)0.0296 (7)−0.0024 (7)0.0086 (6)−0.0020 (7)
C80.0502 (10)0.0419 (9)0.0324 (8)−0.0064 (8)0.0101 (7)0.0030 (7)
C90.0486 (10)0.0378 (9)0.0346 (8)0.0066 (8)0.0021 (7)0.0045 (7)
C100.0339 (8)0.0483 (10)0.0442 (9)0.0103 (7)0.0094 (7)0.0042 (8)
C110.0326 (8)0.0449 (9)0.0357 (8)0.0022 (7)0.0109 (6)0.0071 (7)

Geometric parameters (Å, °)

O1—N51.2350 (19)C3—H3B0.9700
O2—N51.2404 (18)C4—H4B0.9700
N1—C11.326 (2)C4—H4C0.9700
N1—C41.468 (2)C5—C61.505 (2)
N1—H1A0.8600C5—H5A0.9700
N2—C11.332 (2)C5—H5B0.9700
N2—C21.452 (2)C6—C71.388 (2)
N2—C31.4811 (19)C6—C111.393 (2)
N3—C31.431 (2)C7—C81.385 (2)
N3—C41.442 (2)C7—H7A0.9300
N3—C51.466 (2)C8—C91.381 (3)
N4—N51.3269 (19)C8—H8A0.9300
N4—C11.367 (2)C9—C101.373 (3)
C2—H2A0.9600C9—H9A0.9300
C2—H2B0.9600C10—C111.385 (2)
C2—H2C0.9600C10—H10A0.9300
C3—H3A0.9700C11—H11A0.9300
C1—N1—C4123.43 (14)N3—C4—H4B109.3
C1—N1—H1A118.3N1—C4—H4B109.3
C4—N1—H1A118.3N3—C4—H4C109.3
C1—N2—C2122.62 (13)N1—C4—H4C109.3
C1—N2—C3118.34 (13)H4B—C4—H4C108.0
C2—N2—C3118.93 (13)N3—C5—C6112.94 (12)
C3—N3—C4108.64 (12)N3—C5—H5A109.0
C3—N3—C5113.51 (13)C6—C5—H5A109.0
C4—N3—C5113.66 (14)N3—C5—H5B109.0
N5—N4—C1118.25 (13)C6—C5—H5B109.0
O1—N5—O2121.13 (14)H5A—C5—H5B107.8
O1—N5—N4123.34 (14)C7—C6—C11118.43 (15)
O2—N5—N4115.48 (14)C7—C6—C5120.00 (14)
N1—C1—N2119.30 (14)C11—C6—C5121.53 (14)
N1—C1—N4125.42 (14)C8—C7—C6121.10 (15)
N2—C1—N4115.07 (14)C8—C7—H7A119.5
N2—C2—H2A109.5C6—C7—H7A119.5
N2—C2—H2B109.5C9—C8—C7119.81 (16)
H2A—C2—H2B109.5C9—C8—H8A120.1
N2—C2—H2C109.5C7—C8—H8A120.1
H2A—C2—H2C109.5C10—C9—C8119.68 (16)
H2B—C2—H2C109.5C10—C9—H9A120.2
N3—C3—N2111.61 (13)C8—C9—H9A120.2
N3—C3—H3A109.3C9—C10—C11120.81 (16)
N2—C3—H3A109.3C9—C10—H10A119.6
N3—C3—H3B109.3C11—C10—H10A119.6
N2—C3—H3B109.3C10—C11—C6120.15 (15)
H3A—C3—H3B108.0C10—C11—H11A119.9
N3—C4—N1111.46 (13)C6—C11—H11A119.9
C1—N4—N5—O115.3 (2)C5—N3—C4—N177.68 (17)
C1—N4—N5—O2−167.27 (14)C1—N1—C4—N320.6 (2)
C4—N1—C1—N21.7 (2)C3—N3—C5—C6−164.43 (13)
C4—N1—C1—N4176.15 (15)C4—N3—C5—C670.73 (17)
C2—N2—C1—N1−176.81 (16)N3—C5—C6—C7−153.33 (14)
C3—N2—C1—N17.1 (2)N3—C5—C6—C1128.9 (2)
C2—N2—C1—N48.2 (2)C11—C6—C7—C80.7 (2)
C3—N2—C1—N4−167.92 (14)C5—C6—C7—C8−177.09 (14)
N5—N4—C1—N134.1 (2)C6—C7—C8—C9−0.7 (3)
N5—N4—C1—N2−151.22 (15)C7—C8—C9—C100.3 (3)
C4—N3—C3—N259.01 (17)C8—C9—C10—C110.0 (3)
C5—N3—C3—N2−68.49 (17)C9—C10—C11—C60.1 (3)
C1—N2—C3—N3−38.5 (2)C7—C6—C11—C10−0.4 (2)
C2—N2—C3—N3145.25 (15)C5—C6—C11—C10177.37 (15)
C3—N3—C4—N1−49.73 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.273.093 (2)162
C3—H3A···O2ii0.972.593.305 (2)131
N1—H1A···O10.862.332.730 (2)109

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2529).

References

  • Ebihara, K., Ura, D., Miyamoto, M. & Kaiho, T. (1998). EP Patent No. 0869120.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hu, Z.-Q., Yang, X.-D., An, G.-W., Yang, Z. & Xu, L.-Z. (2008). Acta Cryst. E64, o121. [PMC free article] [PubMed]
  • Rigaku (2004). RAPID-AUTO Rigaku Corporation, Tokyo, Japan
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, C., Yang, W., Hu, Y., Shen, L. & Lu, X. (2008). Acta Cryst. E64, o1515. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography