PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o815.
Published online 2010 March 13. doi:  10.1107/S160053681000886X
PMCID: PMC2983932

N-(2,5-Dimethyl­phen­yl)-2-methyl­benzamide

Abstract

In the title compound, C16H17NO, the two aromatic rings are almost coplanar, making a dihedral angle of 1.9 (2)°. The amide group makes dihedral angles of 48.0 (3) and 48.6 (3)° with the 2-methyl­phenyl and the 2,5-dimethyl­phenyl rings, respectively. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains running along the a axis of the crystal.

Related literature

For related structures, see Gowda, Foro et al. (2008a [triangle],b [triangle]); Gowda, Tokarčík et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o815-scheme1.jpg

Experimental

Crystal data

  • C16H17NO
  • M r = 239.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o815-efi1.jpg
  • a = 4.90104 (10) Å
  • b = 5.85657 (16) Å
  • c = 45.8291 (12) Å
  • V = 1315.45 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.54 × 0.35 × 0.09 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.957, T max = 0.990
  • 22131 measured reflections
  • 1414 independent reflections
  • 1338 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.097
  • S = 1.20
  • 1414 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000886X/dn2545sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000886X/dn2545Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship

supplementary crystallographic information

Comment

As a part of our efforts to explore the effect of the substituents on the structures of benzanilides (Gowda, Foro et al., 2008a,b; Gowda, Tokarčík et al., 2009), in the present work, the structure of 2-methyl-N-(2,5-dimethylphenyl)benzamide (I) has been determined.

In the structure of (I) (Fig. 1), the N—H and C=O groups are in antiperiplanar conformation. This conformation is similar to those already observed, e. g. in 2-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008a), 2-methyl-N-(2,6-dimethylphenyl)- benzamide (III) (Gowda, Foro et al., 2008b) and in 2-methyl-N-(2,4-dimethylphenyl)benzamide (IV) (Gowda, Tokarčík et al., 2009). Further in (I), the conformation of the C=O group to the methyl substituent in the 2-methylphenyl ring is syn. This conformation is similar to those observed in (II) and (IV). The bond parameters in (I) are similar to those in (II), (III) and (IV) and other benzanilides (Gowda, Foro et al., 2008a,b; Gowda, Tokarčík et al., 2009).

The two aromatic rings are almost coplanar, with the dihedral angle of 1.9 (2)°. The amido group makes dihedral angles of 48.0 (3)° and 48.6 (3)° with the 2-methylphenyl and the 2,5-dimethylphenyl rings, respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains running along the a-axis of the crystal (Fig. 2).

Experimental

The title compound was prepared according to the method described by Gowda, Foro et al. (2008b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Block-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl). The C16 methyl group exhibits orientational disorder in the positions of H atoms. In the last cycles of refinement, all H atoms were treated as riding on their parent atoms.

The two sets of methyl hydrogen atoms were refined with occupancies 0.74 (4) and 0.26 (4). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) x + 1, y, z].

Crystal data

C16H17NOF(000) = 512
Mr = 239.31Dx = 1.208 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11414 reflections
a = 4.90104 (10) Åθ = 1.8–29.5°
b = 5.85657 (16) ŵ = 0.08 mm1
c = 45.8291 (12) ÅT = 295 K
V = 1315.45 (6) Å3Block, colourless
Z = 40.54 × 0.35 × 0.09 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer1414 independent reflections
graphite1338 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.037
ω scansθmax = 25°, θmin = 1.8°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −5→5
Tmin = 0.957, Tmax = 0.990k = −6→6
22131 measured reflectionsl = −54→54

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0248P)2 + 0.5849P] where P = (Fo2 + 2Fc2)/3
1414 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.1938 (4)0.2752 (5)0.11488 (4)0.0571 (7)
N10.6250 (4)0.2075 (4)0.12991 (4)0.0354 (5)
H1N0.79450.21320.12510.043*
C10.4388 (5)0.2701 (5)0.10975 (5)0.0345 (6)
C20.5509 (5)0.3297 (5)0.08026 (5)0.0340 (6)
C30.4651 (6)0.5263 (5)0.06577 (6)0.0436 (7)
C40.5758 (7)0.5680 (6)0.03829 (6)0.0580 (9)
H40.52410.69890.02820.070*
C50.7593 (7)0.4208 (7)0.02570 (6)0.0644 (10)
H50.82940.45320.00730.077*
C60.8400 (7)0.2271 (7)0.03994 (6)0.0600 (9)
H60.96270.12670.03130.072*
C70.7366 (6)0.1831 (5)0.06728 (6)0.0446 (7)
H70.79240.05280.07720.054*
C80.5574 (5)0.1322 (4)0.15873 (5)0.0323 (6)
C90.6678 (6)−0.0703 (5)0.16930 (6)0.0382 (6)
C100.5923 (6)−0.1364 (5)0.19709 (6)0.0484 (8)
H100.6660−0.26960.20480.058*
C110.4121 (6)−0.0122 (5)0.21371 (6)0.0488 (8)
H110.3631−0.06440.23210.059*
C120.3027 (6)0.1906 (5)0.20322 (5)0.0399 (7)
C130.3794 (5)0.2610 (5)0.17554 (5)0.0365 (6)
H130.31030.39690.16810.044*
C140.2646 (7)0.6906 (6)0.07875 (8)0.0633 (9)
H14A0.25760.82640.06700.095*
H14B0.32060.72940.09820.095*
H14C0.08720.62130.07930.095*
C150.8619 (6)−0.2117 (5)0.15136 (6)0.0527 (8)
H15A1.0349−0.13540.15020.079*
H15B0.7888−0.23160.13210.079*
H15C0.8857−0.35830.16040.079*
C160.1035 (7)0.3287 (6)0.22091 (6)0.0566 (9)
H16A0.11990.28880.24120.068*0.74
H16B−0.07860.29710.21440.068*0.74
H16C0.14200.48830.21850.068*0.74
H16D0.00250.42760.20820.068*0.26
H16E0.20070.41880.23500.068*0.26
H16F−0.02010.22790.23090.068*0.26

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0242 (10)0.0968 (18)0.0502 (11)0.0001 (13)0.0046 (9)0.0132 (13)
N10.0211 (10)0.0470 (13)0.0382 (11)0.0021 (11)0.0061 (9)0.0045 (11)
C10.0267 (13)0.0385 (15)0.0382 (14)−0.0019 (13)0.0028 (11)−0.0007 (13)
C20.0242 (12)0.0429 (15)0.0349 (13)−0.0036 (13)−0.0003 (11)−0.0024 (12)
C30.0354 (15)0.0501 (17)0.0454 (16)−0.0044 (15)−0.0066 (13)0.0029 (14)
C40.058 (2)0.068 (2)0.0477 (17)−0.005 (2)−0.0123 (17)0.0192 (17)
C50.059 (2)0.100 (3)0.0339 (15)−0.011 (2)0.0050 (15)0.0039 (19)
C60.0532 (19)0.084 (2)0.0424 (16)0.005 (2)0.0094 (15)−0.0104 (18)
C70.0376 (15)0.0532 (18)0.0431 (15)0.0033 (16)0.0023 (13)−0.0010 (14)
C80.0271 (13)0.0359 (14)0.0340 (13)−0.0028 (13)0.0029 (12)0.0016 (11)
C90.0315 (14)0.0402 (15)0.0429 (15)−0.0003 (14)0.0006 (12)0.0004 (12)
C100.0488 (17)0.0452 (17)0.0511 (17)0.0070 (17)0.0016 (15)0.0145 (14)
C110.0489 (18)0.0584 (19)0.0392 (15)0.0001 (18)0.0067 (15)0.0120 (15)
C120.0337 (14)0.0497 (17)0.0363 (13)−0.0020 (15)0.0046 (12)−0.0020 (13)
C130.0331 (13)0.0369 (14)0.0395 (14)0.0044 (14)0.0022 (11)0.0016 (12)
C140.0526 (19)0.0535 (19)0.084 (2)0.0100 (19)−0.0045 (18)0.0053 (19)
C150.0522 (18)0.0435 (17)0.0625 (18)0.0149 (18)0.0056 (15)0.0020 (15)
C160.0529 (19)0.072 (2)0.0449 (16)0.007 (2)0.0120 (15)−0.0044 (16)

Geometric parameters (Å, °)

O1—C11.224 (3)C10—C111.375 (4)
N1—C11.349 (3)C10—H100.9300
N1—C81.431 (3)C11—C121.389 (4)
N1—H1N0.8598C11—H110.9300
C1—C21.500 (3)C12—C131.386 (3)
C2—C71.386 (4)C12—C161.505 (4)
C2—C31.394 (4)C13—H130.9300
C3—C41.393 (4)C14—H14A0.9600
C3—C141.499 (4)C14—H14B0.9600
C4—C51.373 (5)C14—H14C0.9600
C4—H40.9300C15—H15A0.9600
C5—C61.367 (5)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.376 (4)C16—H16A0.9599
C6—H60.9300C16—H16B0.9598
C7—H70.9300C16—H16C0.9602
C8—C131.387 (3)C16—H16D0.9605
C8—C91.391 (4)C16—H16E0.9588
C9—C101.381 (4)C16—H16F0.9607
C9—C151.505 (4)
C1—N1—C8124.0 (2)C11—C12—C16121.6 (3)
C1—N1—H1N117.9C12—C13—C8121.2 (3)
C8—N1—H1N118.1C12—C13—H13119.4
O1—C1—N1122.6 (2)C8—C13—H13119.4
O1—C1—C2121.8 (2)C3—C14—H14A109.5
N1—C1—C2115.6 (2)C3—C14—H14B109.5
C7—C2—C3120.4 (3)H14A—C14—H14B109.5
C7—C2—C1118.9 (2)C3—C14—H14C109.5
C3—C2—C1120.7 (2)H14A—C14—H14C109.5
C4—C3—C2117.3 (3)H14B—C14—H14C109.5
C4—C3—C14120.1 (3)C9—C15—H15A109.5
C2—C3—C14122.6 (3)C9—C15—H15B109.5
C5—C4—C3121.7 (3)H15A—C15—H15B109.5
C5—C4—H4119.2C9—C15—H15C109.5
C3—C4—H4119.2H15A—C15—H15C109.5
C6—C5—C4120.7 (3)H15B—C15—H15C109.5
C6—C5—H5119.7C12—C16—H16A109.6
C4—C5—H5119.7C12—C16—H16B109.3
C5—C6—C7118.9 (3)H16A—C16—H16B109.5
C5—C6—H6120.5C12—C16—H16C109.4
C7—C6—H6120.5H16A—C16—H16C109.5
C6—C7—C2121.1 (3)H16B—C16—H16C109.5
C6—C7—H7119.4C12—C16—H16D109.3
C2—C7—H7119.4H16A—C16—H16D141.1
C13—C8—C9121.0 (2)H16B—C16—H16D56.4
C13—C8—N1119.4 (2)H16C—C16—H16D56.1
C9—C8—N1119.6 (2)C12—C16—H16E109.6
C10—C9—C8117.1 (3)H16A—C16—H16E56.2
C10—C9—C15121.2 (3)H16B—C16—H16E141.1
C8—C9—C15121.6 (2)H16C—C16—H16E56.3
C11—C10—C9122.3 (3)H16D—C16—H16E109.4
C11—C10—H10118.8C12—C16—H16F109.5
C9—C10—H10118.8H16A—C16—H16F56.3
C10—C11—C12120.6 (3)H16B—C16—H16F56.2
C10—C11—H11119.7H16C—C16—H16F141.1
C12—C11—H11119.7H16D—C16—H16F109.5
C13—C12—C11117.8 (3)H16E—C16—H16F109.5
C13—C12—C16120.6 (3)
C8—N1—C1—O12.7 (5)C1—C2—C7—C6178.3 (3)
C8—N1—C1—C2−176.3 (2)C1—N1—C8—C13−49.7 (4)
O1—C1—C2—C7−130.9 (3)C1—N1—C8—C9129.3 (3)
N1—C1—C2—C748.1 (3)C13—C8—C9—C100.0 (4)
O1—C1—C2—C347.5 (4)N1—C8—C9—C10−179.1 (3)
N1—C1—C2—C3−133.5 (3)C13—C8—C9—C15−179.8 (3)
C7—C2—C3—C4−0.7 (4)N1—C8—C9—C151.1 (4)
C1—C2—C3—C4−179.1 (3)C8—C9—C10—C111.3 (4)
C7—C2—C3—C14180.0 (3)C15—C9—C10—C11−178.9 (3)
C1—C2—C3—C141.5 (4)C9—C10—C11—C12−1.6 (5)
C2—C3—C4—C50.8 (4)C10—C11—C12—C130.6 (4)
C14—C3—C4—C5−179.8 (3)C10—C11—C12—C16179.5 (3)
C3—C4—C5—C6−0.1 (5)C11—C12—C13—C80.6 (4)
C4—C5—C6—C7−0.7 (5)C16—C12—C13—C8−178.3 (2)
C5—C6—C7—C20.9 (5)C9—C8—C13—C12−0.9 (4)
C3—C2—C7—C6−0.2 (4)N1—C8—C13—C12178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.899 (3)172

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2545).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography