PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m438–m439.
Published online 2010 March 24. doi:  10.1107/S1600536810009542
PMCID: PMC2983931

(μ-1,4,7,10-Tetra­oxacyclo­dodeca­ne)bis­[(1,4,7,10-tetra­oxacyclo­dodeca­ne)lithium] bis­(perchlorate)

Abstract

12-Crown-4 ether (12C4) and LiClO4 combine to form the ionic title compound, [Li2(C8H16O4)3](ClO4)2, which is com­posed of discrete Li/12C4 cations and perchlorate anions. In the [Li2(12C4)3]2+ cation there are two peripheral 12C4 ligands, which each form four Li—O bonds with only one Li+ atom. Additionally there is a central 12C4 in which diagonal O atoms form one Li—O bond each with both Li+ atoms. Therefore each Li+ atom is penta­coordinated in a distorted square-pyramidal geometry, forming four longer bonds to the O atoms on the peripheral 12C4 and one shorter bond to an O atom of the central 12C4. The cation occupies a crystallographic inversion centre located at the center of the ring of the central 12C4 ligand. The Li+ atom lies above the cavity of the peripheral 12C4 by 0.815 (2) Å because it is too large to fit in the cavity.

Related literature

For applications of crown ethers, see: Jagannadh & Sarma (1999 [triangle]); Lehn (1973 [triangle], 1995 [triangle]); Doyle & McCord (1998 [triangle]); Blasius et al. (1982 [triangle]); Blasius & Janzen (1982 [triangle]); Hayashita et al. (1992 [triangle]); Frühauf & Zeller (1991 [triangle]). For 12-crown-4 ether geometry, see: Raithby et al. (1997 [triangle]); Jones et al. (1997 [triangle]). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983 [triangle]); Dalley (1978 [triangle]); Shannon (1976 [triangle]). For tris­(1,4,7,10-tetra­oxa­cyclo­dodeca­ne)dilithium bis­[tetra­hydrido­aluminate(III)], see: Bollmann & Olbrich (2004 [triangle]). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002 [triangle]). For a description of 1,4,7,10-tetra­oxacyclo­dodecane-trideuteroacetonitrile-lithium perchlorate, synthesized simultaneously with the title compound, see: Guzei et al. (2010 [triangle]). The outlier reflections were omitted based on the statistics test described by Prince & Nicholson (1983 [triangle]); Rollett (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m438-scheme1.jpg

Experimental

Crystal data

  • [Li2(C8H16O4)3](ClO4)2
  • M r = 741.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m438-efi1.jpg
  • a = 7.7395 (7) Å
  • b = 14.1924 (13) Å
  • c = 15.2801 (14) Å
  • β = 95.962 (2)°
  • V = 1669.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker CCD-1000 area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.897, T max = 0.947
  • 13593 measured reflections
  • 3412 independent reflections
  • 3139 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.092
  • S = 1.04
  • 3412 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007 [triangle]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010 [triangle]) and modiCIFer (Guzei, 2007 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009542/si2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009542/si2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Crown ethers complex with metal ions through the oxygen atoms with remarkable selectivity. They have high conformational flexibility, act as host molecules for various guests (Jagannadh et al., 1999), and have a broad range of applications. Their importance has been studied in numerous fields such as molecular design (Lehn, 1973), supramolecular chemistry (Lehn, 1995), analytical chemistry (Doyle & McCord, 1998; Blasius et al., 1982; Blasius & Janzen, 1982; Hayashita et al., 1992) and medicine (Fruhauf & Zeller, 1991). In this study, the goal was to understand the nature of crown ether/Li+ complexes, and to extend its application to facilitate the characterization of host-guest type drug delivery systems. Thus, we are developing a systematic methodology based on experimental X-ray crystallography. As a result several novel complexes including the title compound (I) were synthesized.

12-crown-4 ether (12C4) and LiClO4 combine to form an ionic compound composed of discrete cations and anions. The cation is formed by two Li+ metals and three 12C4 ligands interacting to form a complex while the anion is uncomplexed perchlorate. In the cation, two of the 12C4 ligands are peripheral, each interacting with only one Li+. The third 12C4 lies between the two Li+ atoms and two opposite oxygen atoms each interact with one of the Li+ atoms. The cation occupies an inversion center located at the center of the ring of the central 12C4. Each Li+ is pentacoordinate with a distorted square pyramidal geometry forming four bonds to the oxygen atoms of a peripheral 12C4 and one bond to an oxygen atom belonging to the center 12C4. The Li—O bond to the central 12C4 is significantly shorter (1.936 (3) Å) than those to the oxygen atoms on the peripheral 12C4 (av. 2.077 (14) Å). The peripheral 12C4 has approximate C4 symmetry and is in the common [3333] conformation (Raithby et al., 1997; Jones et al., 1997) with the oxygen atoms being coplanar within of 0.013 Å . The central 12C4 is in the [66] conformation (Raithby et al., 1997). The Li+ atom resides above the cavity of the peripheral 12C4 by 0.815 (2) Å. The average diagonal length measured between atom pairs O1/O3 and O2/O4 of the peripheral 12C4 is 3.8211 (15) Å resulting in an adjusted diameter of the cavity of 1.0211 Å (Shoham et al., 1983; Dalley, 1978) . The Li+ has an ionic diameter between 1.18 Å and 1.52 Å; thus it is to large to fit in the cavity (Shannon, 1976).

The angles and distances involving the lithium atoms are similar to those in tris(1,4,7,10-tetraoxacyclododecane)-di-lithium bis(tetrahydridoaluminate(III)) (Bollmann & Olbrich, 2004) which contains the same cationic lithium complex as (I) with a different anion . A Mogul structural check confirmed that (I) exhibits typical geometrical parameters (Bruno et al., 2002).

The Li+ cation complexes form sheets in the ac plane which stack along the b axis. The anions are positioned between adjacent sheets of cations.

Experimental

All chemicals were purchased from the Aldrich Chemical Co. Inc. and were used as received. 12-crown-4 (12C4, C8H16O4, 98% pure) and lithium perchlorate (LiClO4, 99% pure) were separately dissolved in acetonitrile-d3 (CD3CN, 99% pure). These two solutions were then mixed together according to a 1:1 molar ratio of 12C4/LiClO4.The final solution was kept in a desiccator and the solvent was allowed to evaporate gradually in order to produce a supersaturated solution. The supersaturated solution was stored at –20 °C refrigerator, until crystals formed after 48 hours. Two types of colorless crystals suitable for X-ray diffraction were obtained and separated from the solution, one of which was compound (I) the other being 1,4,7,10-tetraoxacyclododecane-trideuteroacetonitrile-lithium perchlorate (Guzei et al., 2010).

Refinement

All H atoms were placed in idealized locations and refined as riding, with C—H=0.99 Å and Uiso(H) = 1.2Ueq(C).

The outlier reflections were omitted based on the statistics test described in Prince, E. and Nicholson, W. L. (1983) Acta Cryst. A39, 407-410 and Rollett J. S. (1988) Crystallographic Computing 4, 149-166. Oxford University Press, and implemented in program FCF_filter (Guzei, 2007). The number of omitted outliers is 2..

Figures

Fig. 1.
Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity. Symmetry transformations used to generate equivalent atoms: i -x, -y, -z+2.

Crystal data

[Li2(C8H16O4)3](ClO4)2F(000) = 784
Mr = 741.40Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 7.7395 (7) Åθ = 2.7–26.4°
b = 14.1924 (13) ŵ = 0.28 mm1
c = 15.2801 (14) ÅT = 100 K
β = 95.962 (2)°Block, colourless
V = 1669.3 (3) Å30.40 × 0.30 × 0.20 mm
Z = 2

Data collection

Bruker CCD-1000 area-detector diffractometer3412 independent reflections
Radiation source: fine-focus sealed tube3139 reflections with I > 2σ(I)
graphiteRint = 0.027
0.30° ω and 0.4 ° [var phi] scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −9→9
Tmin = 0.897, Tmax = 0.947k = −17→17
13593 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0467P)2 + 1.027P] where P = (Fo2 + 2Fc2)/3
3412 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.37224 (13)−0.00939 (8)0.79331 (7)0.0253 (2)
O20.14456 (14)−0.11875 (7)0.68986 (7)0.0228 (2)
O3−0.10708 (13)0.00835 (7)0.70392 (6)0.0206 (2)
O40.11574 (14)0.11599 (7)0.80927 (7)0.0223 (2)
O50.01430 (12)−0.10039 (7)0.88536 (6)0.0188 (2)
O6−0.20229 (14)0.05033 (7)0.94017 (7)0.0233 (2)
Li10.1036 (3)−0.02805 (17)0.79255 (15)0.0201 (5)
C10.4243 (2)−0.04051 (12)0.71080 (10)0.0279 (3)
H1A0.5516−0.04980.71510.033*
H1B0.39090.00630.66410.033*
C20.3315 (2)−0.13188 (12)0.69088 (11)0.0303 (4)
H2A0.3585−0.15570.63290.036*
H2B0.3719−0.17920.73600.036*
C30.0620 (2)−0.08202 (11)0.60923 (10)0.0261 (3)
H3A0.0564−0.13040.56240.031*
H3B0.1261−0.02670.59000.031*
C4−0.1181 (2)−0.05422 (12)0.62882 (10)0.0261 (3)
H4A−0.1794−0.02230.57700.031*
H4B−0.1849−0.11120.64140.031*
C5−0.0971 (2)0.10586 (11)0.68153 (10)0.0243 (3)
H5A−0.21130.12910.65500.029*
H5B−0.01030.11580.63920.029*
C6−0.0433 (2)0.15582 (11)0.76647 (10)0.0255 (3)
H6A−0.02560.22360.75480.031*
H6B−0.13660.15030.80580.031*
C70.2697 (2)0.15160 (11)0.77685 (10)0.0251 (3)
H7A0.29190.21730.79660.030*
H7B0.25860.15010.71170.030*
C80.4132 (2)0.08828 (12)0.81403 (10)0.0277 (3)
H8A0.52220.10580.78950.033*
H8B0.43150.09630.87870.033*
C90.1074 (2)−0.16375 (11)0.94693 (10)0.0236 (3)
H9A0.1499−0.21820.91480.028*
H9B0.0280−0.18780.98860.028*
C10−0.17131 (18)−0.10405 (11)0.88613 (9)0.0211 (3)
H10A−0.2075−0.17030.89300.025*
H10B−0.2275−0.08080.82900.025*
C11−0.23197 (18)−0.04594 (11)0.95912 (10)0.0219 (3)
H11A−0.3572−0.05690.96320.026*
H11B−0.1670−0.06361.01600.026*
C12−0.2582 (2)0.11475 (11)1.00296 (10)0.0248 (3)
H12A−0.32480.08021.04470.030*
H12B−0.33630.16220.97230.030*
Cl10.42590 (4)0.18127 (2)0.53628 (2)0.01772 (11)
O70.49851 (14)0.23355 (8)0.61216 (7)0.0266 (3)
O80.38979 (16)0.24318 (8)0.46246 (8)0.0325 (3)
O90.26490 (16)0.13825 (9)0.55554 (7)0.0334 (3)
O100.54620 (18)0.11021 (10)0.51571 (9)0.0421 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0200 (5)0.0360 (6)0.0202 (5)−0.0012 (4)0.0035 (4)0.0050 (4)
O20.0284 (6)0.0210 (5)0.0197 (5)−0.0002 (4)0.0064 (4)0.0007 (4)
O30.0213 (5)0.0225 (5)0.0179 (5)−0.0017 (4)0.0012 (4)0.0025 (4)
O40.0266 (5)0.0227 (5)0.0177 (5)−0.0050 (4)0.0026 (4)−0.0001 (4)
O50.0162 (5)0.0221 (5)0.0183 (5)0.0005 (4)0.0026 (4)0.0035 (4)
O60.0276 (5)0.0241 (5)0.0191 (5)0.0013 (4)0.0060 (4)−0.0004 (4)
Li10.0201 (11)0.0215 (12)0.0188 (11)−0.0005 (9)0.0028 (9)0.0021 (9)
C10.0204 (7)0.0401 (9)0.0240 (8)0.0036 (6)0.0065 (6)0.0031 (7)
C20.0344 (9)0.0293 (8)0.0295 (8)0.0115 (7)0.0138 (7)0.0026 (7)
C30.0332 (8)0.0269 (8)0.0181 (7)−0.0032 (6)0.0033 (6)−0.0031 (6)
C40.0287 (8)0.0304 (8)0.0183 (7)−0.0091 (6)−0.0015 (6)−0.0031 (6)
C50.0217 (7)0.0234 (7)0.0273 (8)0.0013 (6)0.0001 (6)0.0063 (6)
C60.0266 (8)0.0219 (7)0.0290 (8)0.0054 (6)0.0075 (6)0.0020 (6)
C70.0283 (8)0.0264 (8)0.0211 (7)−0.0099 (6)0.0043 (6)−0.0009 (6)
C80.0229 (7)0.0377 (9)0.0220 (7)−0.0124 (6)−0.0006 (6)−0.0002 (6)
C90.0288 (8)0.0193 (7)0.0226 (7)0.0045 (6)0.0020 (6)0.0022 (6)
C100.0167 (7)0.0260 (7)0.0207 (7)−0.0057 (5)0.0019 (5)−0.0007 (6)
C110.0186 (7)0.0269 (8)0.0206 (7)−0.0004 (6)0.0050 (5)0.0031 (6)
C120.0228 (7)0.0292 (8)0.0223 (7)0.0086 (6)0.0012 (6)−0.0023 (6)
Cl10.01952 (18)0.01895 (18)0.01472 (18)−0.00176 (12)0.00186 (12)0.00107 (11)
O70.0229 (5)0.0326 (6)0.0233 (5)−0.0044 (4)−0.0018 (4)−0.0071 (5)
O80.0369 (6)0.0321 (6)0.0267 (6)−0.0082 (5)−0.0056 (5)0.0132 (5)
O90.0339 (6)0.0468 (7)0.0197 (5)−0.0226 (5)0.0043 (5)−0.0008 (5)
O100.0496 (8)0.0424 (8)0.0346 (7)0.0217 (6)0.0055 (6)−0.0075 (6)

Geometric parameters (Å, °)

O1—C11.4326 (18)C4—H4B0.9900
O1—C81.450 (2)C5—C61.499 (2)
O1—Li12.094 (3)C5—H5A0.9900
O2—C31.4264 (18)C5—H5B0.9900
O2—C21.4573 (19)C6—H6A0.9900
O2—Li12.079 (3)C6—H6B0.9900
O3—C51.4296 (18)C7—C81.494 (2)
O3—C41.4466 (18)C7—H7A0.9900
O3—Li12.074 (3)C7—H7B0.9900
O4—C71.4295 (18)C8—H8A0.9900
O4—C61.4473 (18)C8—H8B0.9900
O4—Li12.061 (3)C9—C12i1.499 (2)
O5—C101.4388 (16)C9—H9A0.9900
O5—C91.4394 (17)C9—H9B0.9900
O5—Li11.936 (3)C10—C111.501 (2)
O6—C111.4203 (18)C10—H10A0.9900
O6—C121.4247 (18)C10—H10B0.9900
C1—C21.498 (2)C11—H11A0.9900
C1—H1A0.9900C11—H11B0.9900
C1—H1B0.9900C12—C9i1.499 (2)
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C41.508 (2)Cl1—O101.4294 (12)
C3—H3A0.9900Cl1—O81.4343 (11)
C3—H3B0.9900Cl1—O71.4407 (11)
C4—H4A0.9900Cl1—O91.4451 (11)
C1—O1—C8114.32 (12)C6—C5—H5A110.6
C1—O1—Li1109.00 (11)O3—C5—H5B110.6
C8—O1—Li1108.46 (11)C6—C5—H5B110.6
C3—O2—C2114.29 (11)H5A—C5—H5B108.8
C3—O2—Li1109.63 (11)O4—C6—C5110.67 (12)
C2—O2—Li1107.45 (11)O4—C6—H6A109.5
C5—O3—C4113.86 (11)C5—C6—H6A109.5
C5—O3—Li1109.81 (11)O4—C6—H6B109.5
C4—O3—Li1110.02 (11)C5—C6—H6B109.5
C7—O4—C6113.93 (11)H6A—C6—H6B108.1
C7—O4—Li1109.66 (11)O4—C7—C8105.61 (12)
C6—O4—Li1107.81 (11)O4—C7—H7A110.6
C10—O5—C9113.85 (11)C8—C7—H7A110.6
C10—O5—Li1117.26 (11)O4—C7—H7B110.6
C9—O5—Li1128.14 (11)C8—C7—H7B110.6
C11—O6—C12114.41 (11)H7A—C7—H7B108.7
O5—Li1—O4116.76 (12)O1—C8—C7110.79 (12)
O5—Li1—O3107.10 (12)O1—C8—H8A109.5
O4—Li1—O381.74 (10)C7—C8—H8A109.5
O5—Li1—O2108.58 (12)O1—C8—H8B109.5
O4—Li1—O2134.35 (13)C7—C8—H8B109.5
O3—Li1—O280.36 (9)H8A—C8—H8B108.1
O5—Li1—O1119.53 (12)O5—C9—C12i110.75 (12)
O4—Li1—O180.89 (10)O5—C9—H9A109.5
O3—Li1—O1133.22 (12)C12i—C9—H9A109.5
O2—Li1—O181.58 (10)O5—C9—H9B109.5
O1—C1—C2105.85 (12)C12i—C9—H9B109.5
O1—C1—H1A110.6H9A—C9—H9B108.1
C2—C1—H1A110.6O5—C10—C11112.07 (11)
O1—C1—H1B110.6O5—C10—H10A109.2
C2—C1—H1B110.6C11—C10—H10A109.2
H1A—C1—H1B108.7O5—C10—H10B109.2
O2—C2—C1110.23 (12)C11—C10—H10B109.2
O2—C2—H2A109.6H10A—C10—H10B107.9
C1—C2—H2A109.6O6—C11—C10107.90 (11)
O2—C2—H2B109.6O6—C11—H11A110.1
C1—C2—H2B109.6C10—C11—H11A110.1
H2A—C2—H2B108.1O6—C11—H11B110.1
O2—C3—C4105.34 (12)C10—C11—H11B110.1
O2—C3—H3A110.7H11A—C11—H11B108.4
C4—C3—H3A110.7O6—C12—C9i111.52 (12)
O2—C3—H3B110.7O6—C12—H12A109.3
C4—C3—H3B110.7C9i—C12—H12A109.3
H3A—C3—H3B108.8O6—C12—H12B109.3
O3—C4—C3109.81 (12)C9i—C12—H12B109.3
O3—C4—H4A109.7H12A—C12—H12B108.0
C3—C4—H4A109.7O10—Cl1—O8109.72 (8)
O3—C4—H4B109.7O10—Cl1—O7109.37 (7)
C3—C4—H4B109.7O8—Cl1—O7110.20 (7)
H4A—C4—H4B108.2O10—Cl1—O9109.99 (9)
O3—C5—C6105.53 (12)O8—Cl1—O9108.50 (7)
O3—C5—H5A110.6O7—Cl1—O9109.04 (7)
C10—O5—Li1—O479.93 (16)C1—O1—Li1—O4−119.04 (11)
C9—O5—Li1—O4−110.63 (15)C8—O1—Li1—O46.01 (12)
C10—O5—Li1—O3−9.32 (17)C1—O1—Li1—O3−49.5 (2)
C9—O5—Li1—O3160.13 (11)C8—O1—Li1—O375.50 (19)
C10—O5—Li1—O2−94.65 (14)C1—O1—Li1—O218.65 (12)
C9—O5—Li1—O274.80 (17)C8—O1—Li1—O2143.69 (10)
C10—O5—Li1—O1174.62 (12)C8—O1—C1—C2−165.58 (12)
C9—O5—Li1—O1−15.9 (2)Li1—O1—C1—C2−44.04 (15)
C7—O4—Li1—O5142.15 (13)C3—O2—C2—C181.88 (16)
C6—O4—Li1—O5−93.29 (15)Li1—O2—C2—C1−40.01 (16)
C7—O4—Li1—O3−112.81 (10)O1—C1—C2—O256.83 (16)
C6—O4—Li1—O311.75 (11)C2—O2—C3—C4−167.89 (12)
C7—O4—Li1—O2−45.1 (2)Li1—O2—C3—C4−47.21 (15)
C6—O4—Li1—O279.51 (19)C5—O3—C4—C389.63 (15)
C7—O4—Li1—O123.59 (12)Li1—O3—C4—C3−34.13 (15)
C6—O4—Li1—O1148.15 (10)O2—C3—C4—O353.90 (15)
C5—O3—Li1—O5133.72 (12)C4—O3—C5—C6−166.51 (12)
C4—O3—Li1—O5−100.20 (13)Li1—O3—C5—C6−42.64 (14)
C5—O3—Li1—O418.16 (12)C7—O4—C6—C582.64 (15)
C4—O3—Li1—O4144.25 (10)Li1—O4—C6—C5−39.31 (15)
C5—O3—Li1—O2−119.67 (11)O3—C5—C6—O455.08 (15)
C4—O3—Li1—O26.42 (12)C6—O4—C7—C8−168.01 (12)
C5—O3—Li1—O1−51.0 (2)Li1—O4—C7—C8−47.09 (14)
C4—O3—Li1—O175.10 (19)C1—O1—C8—C788.01 (15)
C3—O2—Li1—O5128.64 (12)Li1—O1—C8—C7−33.84 (15)
C2—O2—Li1—O5−106.61 (13)O4—C7—C8—O154.00 (15)
C3—O2—Li1—O4−44.6 (2)C10—O5—C9—C12i−134.05 (13)
C2—O2—Li1—O480.17 (19)Li1—O5—C9—C12i56.20 (18)
C3—O2—Li1—O323.72 (12)C9—O5—C10—C1181.83 (15)
C2—O2—Li1—O3148.47 (10)Li1—O5—C10—C11−107.23 (14)
C3—O2—Li1—O1−112.94 (11)C12—O6—C11—C10178.36 (11)
C2—O2—Li1—O111.80 (12)O5—C10—C11—O667.70 (15)
C1—O1—Li1—O5125.29 (14)C11—O6—C12—C9i112.52 (14)
C8—O1—Li1—O5−109.67 (15)

Symmetry codes: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2246).

References

  • Blasius, E. & Janzen, K. P. (1982). Pure Appl. Chem.54, 2115–2128.
  • Blasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem.183, 1401–1411.
  • Bollmann, M. & Olbrich, F. (2004). Private communication.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SMART, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Dalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207–243. New York: Academic Press.
  • Doyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105–111. [PubMed]
  • Frühauf, S. & Zeller, W. J. (1991). Cancer Res.51, 2943–2948. [PubMed]
  • Guzei, I. A. (2007). FCF_filter and modiCIFer Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Guzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst E66, m440–m441. [PMC free article] [PubMed]
  • Hayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem.64, 815–819.
  • Jagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993–10997.
  • Jones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809–1811.
  • Lehn, J. M. (1973). Structure Bonding, 16, 1–69.
  • Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives Weinheim: VCH.
  • Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410.
  • Raithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241–251.
  • Rollett, J. S. (1988). Crystallographic Computing, Vol. 4, pp. 149–166. Oxford University Press.
  • Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208–209.
  • Westrip, S. P. (2010). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography