PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o849.
Published online 2010 March 17. doi:  10.1107/S1600536810009177
PMCID: PMC2983910

2,2,2-Tribromo-N-(4-methyl­phen­yl)acetamide

Abstract

The asymmetric unit of the title compound, C9H8Br3NO, contains two independent mol­ecules which differ in the orientation of the tribromo group. A weak intra­molecular N—H(...)Br hydrogen bond is observed in each mol­ecule. In the crystal, the independent mol­ecules are linked into chains along the b axis by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003 [triangle]). For our study of the effect of ring and the side-chain substituents on the solid-state structures of N-aromatic amides and for similar structures, see: Brown (1966 [triangle]); Gowda et al. (2009a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o849-scheme1.jpg

Experimental

Crystal data

  • C9H8Br3NO
  • M r = 385.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o849-efi1.jpg
  • a = 9.6926 (6) Å
  • b = 20.531 (1) Å
  • c = 11.8139 (8) Å
  • β = 102.664 (7)°
  • V = 2293.8 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 10.52 mm−1
  • T = 299 K
  • 0.48 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.081, T max = 0.145
  • 14714 measured reflections
  • 4121 independent reflections
  • 3375 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.151
  • S = 1.28
  • 4121 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 1.34 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009177/ci5053sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009177/ci5053Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of the ring and the side chain substituents on solid state structures of N-aromatic amides (Gowda et al., 2009a,b,c), in the present work, the crytsal structure of 2,2,2-tribromo-N-(4-methylphenyl)acetamide has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules, which differ in the orientation of the tribromo group as is evident from either the C-N-CO-CBr3 or N-CO-C-Br torsional angles. The conformations of the N—H bonds in both molecules are anti to the C═O bonds in the side chains, similar to those observed in 2,2,2-tribromo-N-(3-methylphenyl)acetamide (Gowda et al., 2009a), 2,2,2-tribromo-N-(phenyl)acetamide (Gowda et al., 2009b), 2,2,2-tribromo-N-(4-chlorophenyl)acetamide (Gowda et al., 2009c) and other amides (Brown, 1966). The structure of the title compound shows both the intramolecular N—H···Br and intermolecular N—H···O hydrogen bonding.

The packing diagram of molecules showing the hydrogen bonds N1—H1N···O2 and N2—H2N···O1 (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Experimental

The title compound was prepared from p-toluidine, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement

H atoms were positioned with idealized geometry using a riding model with C–H = 0.93–0.96 Å, N–H = 0.86 Å and Uiso(H) = 1.2Ueq(parent atom). The residual electron-density features are located in the region of Br4 and Br3. The highest peak is 0.99 Å from Br4 and the deepest hole is 1.28 Å from Br3. Owing to the poor diffraction quality of the crystal, the Rint value is high (0.089) and this is a structure of relatively low precision.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing in the crystal structure of the title compound, with hydrogen bonds shown as dashed lines.

Crystal data

C9H8Br3NOF(000) = 1456
Mr = 385.89Dx = 2.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5162 reflections
a = 9.6926 (6) Åθ = 2.7–27.8°
b = 20.531 (1) ŵ = 10.52 mm1
c = 11.8139 (8) ÅT = 299 K
β = 102.664 (7)°Prism, colourless
V = 2293.8 (2) Å30.48 × 0.40 × 0.30 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector4121 independent reflections
Radiation source: fine-focus sealed tube3375 reflections with I > 2σ(I)
graphiteRint = 0.089
Rotation method data acquisition using ω and [var phi] scans.θmax = 25.4°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −11→11
Tmin = 0.081, Tmax = 0.145k = −21→24
14714 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.28w = 1/[σ2(Fo2) + (0.P)2 + 26.8682P] where P = (Fo2 + 2Fc2)/3
4121 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = −0.88 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7165 (11)0.2486 (4)0.6954 (9)0.029 (2)
C20.7414 (11)0.1962 (5)0.6292 (10)0.035 (3)
H20.69480.15690.63350.043*
C30.8348 (12)0.2017 (5)0.5568 (11)0.043 (3)
H30.85160.16580.51360.051*
C40.9039 (11)0.2598 (5)0.5475 (9)0.034 (2)
C50.8797 (12)0.3110 (5)0.6175 (10)0.039 (3)
H50.92790.35000.61490.047*
C60.7875 (12)0.3065 (5)0.6901 (10)0.037 (3)
H60.77300.34190.73530.044*
C70.5389 (11)0.2876 (4)0.7992 (9)0.028 (2)
C80.4213 (11)0.2643 (4)0.8592 (9)0.029 (2)
C91.0009 (12)0.2673 (6)0.4652 (10)0.043 (3)
H9A0.94640.26670.38690.052*
H9B1.06750.23200.47620.052*
H9C1.05070.30790.48000.052*
Br10.37301 (14)0.33225 (5)0.95617 (12)0.0480 (4)
Br20.46539 (15)0.18686 (5)0.95318 (12)0.0510 (4)
Br30.25450 (14)0.24690 (6)0.73598 (12)0.0531 (4)
N10.6157 (9)0.2404 (4)0.7652 (8)0.033 (2)
H1N0.60290.20150.78770.039*
O10.5509 (8)0.3449 (3)0.7822 (7)0.042 (2)
C100.3798 (10)0.0087 (4)0.6530 (9)0.025 (2)
C110.3488 (11)−0.0253 (5)0.5503 (10)0.036 (3)
H110.4045−0.06060.53900.044*
C120.2340 (11)−0.0068 (5)0.4633 (10)0.034 (3)
H120.2144−0.02970.39370.041*
C130.1478 (10)0.0452 (5)0.4785 (9)0.029 (2)
C140.1792 (12)0.0765 (5)0.5829 (11)0.038 (3)
H140.12200.11080.59600.046*
C150.2935 (12)0.0590 (5)0.6701 (10)0.035 (3)
H150.31170.08130.74030.042*
C160.5967 (10)0.0331 (5)0.7916 (10)0.030 (2)
C170.7240 (12)0.0074 (5)0.8818 (10)0.036 (3)
C180.0294 (13)0.0685 (5)0.3837 (10)0.042 (3)
H18A0.00320.03460.32700.050*
H18B0.05950.10620.34750.050*
H18C−0.05040.07950.41570.050*
Br40.75931 (14)−0.08465 (6)0.87190 (14)0.0582 (4)
Br50.89309 (14)0.05436 (7)0.86845 (12)0.0540 (4)
Br60.69036 (17)0.02579 (8)1.03563 (12)0.0661 (4)
N20.5023 (9)−0.0097 (4)0.7398 (8)0.032 (2)
H2N0.5144−0.05010.75860.038*
O20.5901 (9)0.0912 (3)0.7746 (8)0.049 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.024 (5)0.027 (5)0.037 (7)0.003 (4)0.006 (5)0.004 (4)
C20.032 (6)0.025 (5)0.049 (8)0.002 (4)0.007 (6)−0.001 (5)
C30.039 (7)0.034 (6)0.057 (9)0.005 (5)0.015 (6)−0.011 (5)
C40.031 (6)0.045 (6)0.020 (6)0.008 (5)−0.004 (5)0.007 (5)
C50.032 (6)0.036 (6)0.049 (8)−0.008 (5)0.006 (6)−0.003 (5)
C60.035 (6)0.033 (5)0.043 (7)−0.006 (5)0.008 (6)−0.009 (5)
C70.030 (6)0.027 (5)0.028 (6)0.001 (4)0.006 (5)0.001 (4)
C80.030 (6)0.022 (5)0.029 (6)0.005 (4)−0.008 (5)−0.002 (4)
C90.035 (7)0.055 (7)0.035 (7)−0.003 (6)−0.004 (6)−0.009 (6)
Br10.0487 (7)0.0402 (6)0.0610 (9)−0.0018 (5)0.0251 (7)−0.0155 (6)
Br20.0660 (9)0.0386 (6)0.0484 (8)0.0034 (6)0.0128 (7)0.0101 (6)
Br30.0423 (7)0.0586 (8)0.0496 (9)−0.0124 (6)−0.0086 (6)−0.0035 (6)
N10.035 (5)0.015 (4)0.049 (6)0.000 (4)0.009 (5)−0.002 (4)
O10.042 (5)0.021 (4)0.064 (6)0.004 (3)0.017 (4)0.001 (3)
C100.024 (5)0.022 (5)0.027 (6)−0.003 (4)0.001 (5)0.004 (4)
C110.027 (6)0.030 (5)0.051 (8)0.001 (5)0.007 (6)−0.002 (5)
C120.032 (6)0.037 (6)0.032 (7)0.000 (5)0.004 (5)−0.003 (5)
C130.024 (5)0.028 (5)0.034 (7)0.000 (4)0.007 (5)0.008 (5)
C140.035 (6)0.028 (5)0.053 (8)0.007 (5)0.014 (6)0.003 (5)
C150.048 (7)0.026 (5)0.030 (7)−0.001 (5)0.002 (6)−0.010 (5)
C160.023 (5)0.026 (5)0.044 (7)−0.001 (4)0.012 (5)−0.003 (5)
C170.034 (6)0.026 (5)0.044 (7)−0.009 (5)0.001 (6)−0.004 (5)
C180.045 (7)0.046 (6)0.031 (7)0.006 (6)0.002 (6)0.009 (5)
Br40.0472 (8)0.0352 (6)0.0788 (11)0.0055 (5)−0.0149 (7)0.0032 (6)
Br50.0393 (7)0.0677 (8)0.0523 (9)−0.0199 (6)0.0043 (6)−0.0008 (7)
Br60.0644 (10)0.0966 (11)0.0391 (8)−0.0102 (8)0.0150 (7)−0.0027 (7)
N20.033 (5)0.018 (4)0.040 (6)−0.002 (4)−0.001 (4)−0.001 (4)
O20.044 (5)0.022 (4)0.076 (7)−0.008 (3)−0.001 (5)0.005 (4)

Geometric parameters (Å, °)

C1—C21.383 (14)C10—C151.371 (13)
C1—C61.382 (13)C10—C111.374 (14)
C1—N11.420 (12)C10—N21.439 (13)
C2—C31.380 (15)C11—C121.392 (15)
C2—H20.93C11—H110.93
C3—C41.384 (15)C12—C131.392 (13)
C3—H30.93C12—H120.93
C4—C51.389 (14)C13—C141.366 (15)
C4—C91.501 (15)C13—C181.495 (15)
C5—C61.371 (15)C14—C151.384 (16)
C5—H50.93C14—H140.93
C6—H60.93C15—H150.93
C7—O11.201 (11)C16—O21.209 (11)
C7—N11.337 (12)C16—N21.318 (13)
C7—C81.545 (14)C16—C171.536 (15)
C8—Br11.927 (9)C17—Br41.928 (10)
C8—Br21.932 (9)C17—Br51.938 (10)
C8—Br31.957 (10)C17—Br61.953 (11)
C9—H9A0.96C18—H18A0.96
C9—H9B0.96C18—H18B0.96
C9—H9C0.96C18—H18C0.96
N1—H1N0.86N2—H2N0.86
C2—C1—C6119.6 (9)C15—C10—C11119.3 (10)
C2—C1—N1117.7 (8)C15—C10—N2121.8 (9)
C6—C1—N1122.8 (9)C11—C10—N2118.8 (9)
C3—C2—C1120.5 (9)C10—C11—C12119.9 (10)
C3—C2—H2119.8C10—C11—H11120.1
C1—C2—H2119.8C12—C11—H11120.1
C2—C3—C4120.9 (10)C13—C12—C11121.3 (10)
C2—C3—H3119.5C13—C12—H12119.4
C4—C3—H3119.5C11—C12—H12119.4
C3—C4—C5117.2 (10)C14—C13—C12117.2 (10)
C3—C4—C9121.5 (10)C14—C13—C18120.6 (9)
C5—C4—C9121.3 (10)C12—C13—C18122.2 (10)
C6—C5—C4122.7 (10)C13—C14—C15122.2 (10)
C6—C5—H5118.7C13—C14—H14118.9
C4—C5—H5118.7C15—C14—H14118.9
C5—C6—C1119.1 (10)C10—C15—C14120.1 (10)
C5—C6—H6120.5C10—C15—H15120.0
C1—C6—H6120.5C14—C15—H15120.0
O1—C7—N1125.4 (9)O2—C16—N2125.0 (11)
O1—C7—C8119.2 (8)O2—C16—C17117.4 (9)
N1—C7—C8115.3 (8)N2—C16—C17117.6 (8)
C7—C8—Br1110.4 (6)C16—C17—Br4114.9 (7)
C7—C8—Br2115.2 (6)C16—C17—Br5109.7 (7)
Br1—C8—Br2107.8 (5)Br4—C17—Br5108.5 (5)
C7—C8—Br3106.7 (7)C16—C17—Br6107.9 (7)
Br1—C8—Br3107.8 (5)Br4—C17—Br6108.3 (5)
Br2—C8—Br3108.7 (5)Br5—C17—Br6107.2 (5)
C4—C9—H9A109.5C13—C18—H18A109.5
C4—C9—H9B109.5C13—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C4—C9—H9C109.5C13—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—C1126.0 (8)C16—N2—C10122.4 (8)
C7—N1—H1N117.0C16—N2—H2N118.8
C1—N1—H1N117.0C10—N2—H2N118.8
C6—C1—C2—C3−1.0 (17)C15—C10—C11—C122.5 (14)
N1—C1—C2—C3178.0 (10)N2—C10—C11—C12−177.6 (9)
C1—C2—C3—C4−1.0 (18)C10—C11—C12—C13−0.8 (15)
C2—C3—C4—C52.7 (17)C11—C12—C13—C14−1.2 (14)
C2—C3—C4—C9−177.3 (11)C11—C12—C13—C18176.1 (10)
C3—C4—C5—C6−2.6 (17)C12—C13—C14—C151.5 (15)
C9—C4—C5—C6177.4 (11)C18—C13—C14—C15−175.8 (10)
C4—C5—C6—C10.7 (18)C11—C10—C15—C14−2.2 (15)
C2—C1—C6—C51.2 (17)N2—C10—C15—C14177.9 (9)
N1—C1—C6—C5−177.8 (11)C13—C14—C15—C100.1 (16)
O1—C7—C8—Br1−26.3 (12)O2—C16—C17—Br4−162.1 (8)
N1—C7—C8—Br1156.8 (8)N2—C16—C17—Br418.7 (12)
O1—C7—C8—Br2−148.7 (9)O2—C16—C17—Br5−39.5 (12)
N1—C7—C8—Br234.4 (12)N2—C16—C17—Br5141.3 (8)
O1—C7—C8—Br390.6 (10)O2—C16—C17—Br677.0 (10)
N1—C7—C8—Br3−86.3 (9)N2—C16—C17—Br6−102.2 (9)
O1—C7—N1—C1−5.5 (18)O2—C16—N2—C101.6 (16)
C8—C7—N1—C1171.2 (10)C17—C16—N2—C10−179.3 (9)
C2—C1—N1—C7−153.2 (11)C15—C10—N2—C16−49.1 (14)
C6—C1—N1—C725.8 (17)C11—C10—N2—C16130.9 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.273.078 (10)156
N1—H1N···Br20.862.613.111 (8)118
N2—H2N···O1i0.862.273.032 (10)148
N2—H2N···Br40.862.563.051 (9)118

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5053).

References

  • Brown, C. J. (1966). Acta Cryst.21, 442–445.
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o3242. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2226. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, o2172. [PMC free article] [PubMed]
  • Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography