PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o896–o897.
Published online 2010 March 24. doi:  10.1107/S1600536810009992
PMCID: PMC2983909

(E)-3-(2,3,4,5,6-Penta­fluoro­styr­yl)thio­phene

Abstract

The reaction of thio­phene-3-carboxaldehyde and perfluoro­benzyl­triphenyl­phospho­nium bromide in the presence of sodium hydride gave the title compound, C12H5F5S, in 70% yield. The thiophene and perfluorophenyl groups form a dihedral angle of 5.4 (2)°. The structure is characterized by a head-to-tail organization in a columnar arrangement due to π–π inter­actions between the thio­phene and penta­fluoro­phenyl rings with centroid–centroid distances in the range 3.698 (2)–3.802 (2) Å.

Related literature

For electronic materials with high conductivity due to complementary groups, see: Yamamoto et al. (2009 [triangle]); Hoeben et al. (2005 [triangle]). For a bottom-up approach to rational design of electronic materials, see: Lu & Lieber (2007 [triangle]). For thio­phene derivatives used in solar cells or oLEDs, see: Osaka & McCullough (2008 [triangle]); Mishra et al. (2009 [triangle]). For the structure of 2,5-dibromo-3-(2,3,4,5,6-penta­fluoro­styr­yl)thio­phene, see: Clément et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o896-scheme1.jpg

Experimental

Crystal data

  • C12H5F5S
  • M r = 276.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o896-efi1.jpg
  • a = 5.8097 (15) Å
  • b = 24.581 (6) Å
  • c = 7.3224 (18) Å
  • β = 94.953 (4)°
  • V = 1041.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 100 K
  • 0.31 × 0.21 × 0.05 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.637, T max = 0.746
  • 5781 measured reflections
  • 3056 independent reflections
  • 2513 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086
  • wR(F 2) = 0.186
  • S = 1.21
  • 3056 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009992/sj2740sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009992/sj2740Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Roberto Lazzaroni (Laboratory of Chemistry for Novel Materials, CIRMAP, UMONS), Yves Geerts (Laboratoire de Chimie des Polymères, ULB) and Philippe Dubois (Laboratory of Polymeric and Composite Materials, CIRMAP, UMONS) for fruitful discussions related to thiophene chemistry. This work was supported by the "Revêtement Fonctionnels" program (SMARTFILM project) of the Région Wallonne and the European Commission (FEDER, FSE). CIRMAP is also very grateful for their general financial support in the frame of Objectif 1-Hainaut: Materia Nova, as well as the Belgian Federal Government Office of Science Policy (PAI 6/27). We thank the Laboratoire de Physico-chimie des Polymères et des Inter­faces (University of Cergy Pontoize, France) for the 19F NMR spectra. The diffractometer was funded by NSF grant 0087210, by Ohio board of regents grant CAP-491, and by YSU. OC is a Research Associate of the Belgian National Fund for Scientific Research (FRS–FNRS).

supplementary crystallographic information

Comment

The development of new electronic devices is currently performed through the engineering of organic electronic materials composed of π-conjugated polymers. The incorporation of unsaturated systems with complementary groups takes advantage of high electronic conductivity supplemented by a supramolecular organization at the nanoscale (Yamamoto et al., 2009, Hoeben et al., 2005). Therefore, the rational design of new building blocks has arisen as an essential pathway to fulfill the bottom-up approach (Lu & Lieber, 2007). As a preliminary milestone, we report the structure of (E)-3-(perfluorostyryl)thiophene (1), an intermediate aiming at the preparation of polythiophenes with self-complementary groups. These thiophene derivatives could find applications in electronic devices with solar cell or organic light emitting diode (oLED) properties (Osaka & McCullough, 2008; Mishra et al., 2009). The structure of 1 is shown in Figure 1.

(E)-3-(perfluorostyryl)thiophene crystallizes in the space group P21/c and exhibits an almost planar molecular geometry - a slight rotation of 5.4 (2)° between the L.S. planes of the thiophene and perfluorophenyl groups is observed. The π-π stacking between the aromatic rings arranges the unsaturated compound in alternating orientations within one column due to opposite dipole moments. The distance between the thiophene-perfluorophenyl centres for successive pairs is in the range 3.698 (2)-3.802 (2) Å.

The orientation of the double bonds of successive molecules in the columns is perpendicular, in contrast with 2,5-dibromo-3-(perfluorostyryl)thiophene (Clément et al., 2010), where they are parallel, due to a different arrangement of the molecules with regard to the symmetry elements in the cell, although the space group is identical.

Neighboring columns in 1 are closely packed, with the molecules in neigboring columns shifted up or down by approximately half the intermolecular distance. Between columns, there are also short S—S contacts and 2 F—F interactions. For a list of short contacts, see the "Geometric parameters" table.

Experimental

Perfluorobenzyltriphenylphosphonium bromide (800 mg,1.53 mmol) and sodium hydride (80 mg, 2 mmol) are stirred in 5 ml of DMF during15 min. Then, thiophenecarboxaldehyde (0.13 ml, 1.53 mmol) is added and the mixture is heated at 50 °C. After 16 h, the reaction is hydrolyzed and the solid residue is filtered off. The compound is purified by chromatography on silica gel with hexane/CH2Cl2 (4:1) to give (E)-3-(perfluorostyryl)thiophene in 70% yield. Crystals of 1 were obtained by slow evaporation of a saturated dichloromethane solution. 1H NMR (300 MHz, CDCl3):d7.43 (d, 1 H, CH=, 3JH—H= 16.5, vinyl-H), 7.37 (m, 3 H,3 Har), 6.82 (d, 1 H, CH=, 3JH—H = 16.5, vinyl-H);13C{1H} NMR (CDCl3): d 145.7(C-8, C-12), 142.3 (C-10), 138.8 (C-9, C-11), 130.5, 126.1, 124.3, 123.8 (C-1, C-2, C-3, C-4, C-5, C-6); 111.8 (C-7); 19F NMR (CDCl3): d -140.9 (2 F, Fortho), -154.4 (1 F, Fpara), -162.9 (2 F, Fmeta); ESI-MS (m/z): 276(100, M+), 257 (92, M+ -F).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, Uiso = 1.2Ueq (C).

Figures

Fig. 1.
The structure of 1 with displacement ellipsoids drawn at the 50% probablity level.
Fig. 2.
A view of the packing of 1.

Crystal data

C12H5F5SF(000) = 552
Mr = 276.22Dx = 1.761 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2814 reflections
a = 5.8097 (15) Åθ = 2.9–31.1°
b = 24.581 (6) ŵ = 0.36 mm1
c = 7.3224 (18) ÅT = 100 K
β = 94.953 (4)°Plate, colourless
V = 1041.8 (4) Å30.31 × 0.21 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer3056 independent reflections
Radiation source: fine-focus sealed tube2513 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 31.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −5→8
Tmin = 0.637, Tmax = 0.746k = −25→35
5781 measured reflectionsl = −10→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.21w = 1/[σ2(Fo2) + (0.0193P)2 + 5.9694P] where P = (Fo2 + 2Fc2)/3
3056 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.58 e Å3
3 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.22542 (18)0.54717 (4)0.56342 (15)0.0219 (2)
F9−0.0433 (4)0.80297 (10)0.4285 (3)0.0200 (5)
F10−0.0888 (4)0.91035 (10)0.4229 (3)0.0211 (5)
F120.6511 (4)0.93050 (10)0.7310 (3)0.0218 (5)
F130.6987 (4)0.82233 (10)0.7475 (3)0.0205 (5)
F110.2579 (5)0.97589 (10)0.5694 (4)0.0244 (5)
C40.4895 (7)0.62804 (17)0.6462 (5)0.0181 (7)
H40.61680.64890.68830.022*
C130.5023 (6)0.84305 (17)0.6626 (5)0.0160 (7)
C30.2770 (6)0.65098 (16)0.5703 (5)0.0154 (7)
C80.3328 (6)0.80732 (16)0.5885 (5)0.0154 (7)
C120.4805 (6)0.89877 (16)0.6571 (5)0.0162 (7)
C110.2808 (7)0.92176 (16)0.5756 (5)0.0188 (8)
C90.1336 (7)0.83262 (16)0.5062 (5)0.0161 (7)
C60.2239 (7)0.70861 (16)0.5483 (5)0.0183 (7)
H60.07930.71820.49340.022*
C100.1082 (7)0.88846 (17)0.5015 (5)0.0185 (8)
C70.3708 (7)0.74870 (16)0.6022 (5)0.0178 (7)
H70.51490.73780.65480.021*
C20.1186 (7)0.61079 (17)0.5195 (5)0.0179 (7)
H2−0.03010.61770.46700.022*
C50.4880 (7)0.57227 (17)0.6512 (5)0.0177 (7)
H50.61230.55090.69610.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0228 (5)0.0195 (5)0.0229 (5)−0.0009 (4)−0.0003 (4)−0.0008 (4)
F90.0164 (11)0.0213 (12)0.0216 (12)−0.0008 (9)−0.0019 (9)−0.0022 (9)
F100.0163 (11)0.0242 (13)0.0219 (12)0.0053 (9)−0.0039 (9)0.0004 (10)
F120.0203 (11)0.0239 (13)0.0210 (12)−0.0070 (10)−0.0004 (9)−0.0039 (10)
F130.0150 (10)0.0257 (13)0.0199 (12)0.0008 (9)−0.0033 (9)−0.0005 (9)
F110.0309 (13)0.0179 (12)0.0240 (13)0.0007 (10)0.0003 (10)−0.0014 (10)
C40.0169 (16)0.0215 (19)0.0159 (16)−0.0013 (14)0.0018 (13)−0.0014 (15)
C130.0131 (15)0.024 (2)0.0107 (15)0.0005 (14)0.0010 (12)0.0007 (14)
C30.0158 (16)0.0196 (19)0.0107 (15)0.0011 (13)0.0010 (13)−0.0002 (13)
C80.0136 (16)0.0198 (19)0.0133 (16)0.0009 (13)0.0035 (13)0.0000 (14)
C120.0150 (16)0.0206 (19)0.0129 (16)−0.0048 (14)0.0013 (13)−0.0023 (14)
C110.026 (2)0.0166 (19)0.0137 (17)0.0001 (15)0.0035 (15)−0.0014 (14)
C90.0158 (16)0.0185 (19)0.0141 (16)−0.0014 (14)0.0013 (13)0.0011 (14)
C60.0206 (17)0.0199 (19)0.0148 (17)0.0032 (15)0.0028 (13)0.0011 (14)
C100.0163 (17)0.023 (2)0.0170 (17)0.0047 (14)0.0036 (14)0.0018 (15)
C70.0201 (17)0.0189 (19)0.0144 (16)0.0018 (14)0.0010 (14)−0.0002 (14)
C20.0156 (17)0.022 (2)0.0152 (16)−0.0009 (14)−0.0018 (13)−0.0003 (14)
C50.0170 (17)0.022 (2)0.0133 (16)0.0035 (14)−0.0020 (13)−0.0002 (14)

Geometric parameters (Å, °)

S1—C21.703 (4)C3—C21.380 (5)
S1—C51.718 (4)C3—C61.456 (5)
F9—C91.345 (4)C8—C91.403 (5)
F10—C101.348 (4)C8—C71.460 (5)
F12—C121.338 (4)C12—C111.379 (6)
F13—C131.350 (4)C11—C101.370 (6)
F11—C111.338 (5)C9—C101.381 (6)
C4—C51.371 (6)C6—C71.341 (6)
C4—C31.425 (5)C6—H60.9300
C4—H40.9300C7—H70.9300
C13—C121.376 (6)C2—H20.9300
C13—C81.394 (5)C5—H50.9300
S1···S1i3.5611 (17)F10···H5iii2.49
F9···F13ii2.921 (3)H5···F11iv2.59
F10···F12ii2.865 (3)H2···F13iii2.61
F10···C12ii3.166 (4)C3···C9v3.392 (5)
F10···C5iii3.056 (5)C3···C13vi3.365 (5)
C2—S1—C592.19 (19)F9—C9—C10116.9 (3)
C5—C4—C3113.5 (4)F9—C9—C8120.9 (3)
C5—C4—H4123.3C10—C9—C8122.3 (4)
C3—C4—H4123.3C7—C6—C3124.0 (4)
F13—C13—C12117.4 (3)C7—C6—H6118.0
F13—C13—C8118.8 (4)C3—C6—H6118.0
C12—C13—C8123.7 (4)F10—C10—C11119.8 (4)
C2—C3—C4110.9 (4)F10—C10—C9119.5 (4)
C2—C3—C6122.5 (4)C11—C10—C9120.7 (4)
C4—C3—C6126.6 (4)C6—C7—C8128.1 (4)
C13—C8—C9114.6 (4)C6—C7—H7116.0
C13—C8—C7119.8 (3)C8—C7—H7116.0
C9—C8—C7125.5 (4)C3—C2—S1112.5 (3)
F12—C12—C13120.3 (3)C3—C2—H2123.7
F12—C12—C11120.2 (4)S1—C2—H2123.7
C13—C12—C11119.5 (4)C4—C5—S1110.9 (3)
F11—C11—C10120.9 (4)C4—C5—H5124.6
F11—C11—C12120.0 (4)S1—C5—H5124.6
C10—C11—C12119.1 (4)
C5—C4—C3—C20.0 (5)C2—C3—C6—C7177.5 (4)
C5—C4—C3—C6179.3 (4)C4—C3—C6—C7−1.7 (6)
F13—C13—C8—C9178.9 (3)F11—C11—C10—F10−0.7 (6)
C12—C13—C8—C9−0.1 (6)C12—C11—C10—F10179.4 (3)
F13—C13—C8—C7−0.6 (5)F11—C11—C10—C9179.2 (4)
C12—C13—C8—C7−179.6 (4)C12—C11—C10—C9−0.6 (6)
F13—C13—C12—F121.1 (5)F9—C9—C10—F100.7 (5)
C8—C13—C12—F12−179.9 (3)C8—C9—C10—F10−179.0 (3)
F13—C13—C12—C11−178.5 (3)F9—C9—C10—C11−179.3 (3)
C8—C13—C12—C110.5 (6)C8—C9—C10—C111.1 (6)
F12—C12—C11—F110.4 (6)C3—C6—C7—C8−179.1 (4)
C13—C12—C11—F11−180.0 (4)C13—C8—C7—C6176.1 (4)
F12—C12—C11—C10−179.7 (4)C9—C8—C7—C6−3.3 (7)
C13—C12—C11—C10−0.1 (6)C4—C3—C2—S10.1 (4)
C13—C8—C9—F9179.7 (3)C6—C3—C2—S1−179.2 (3)
C7—C8—C9—F9−0.9 (6)C5—S1—C2—C3−0.2 (3)
C13—C8—C9—C10−0.7 (6)C3—C4—C5—S1−0.2 (4)
C7—C8—C9—C10178.8 (4)C2—S1—C5—C40.2 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1, −y+3/2, z−1/2; (iv) −x+1, y−1/2, −z+3/2; (v) x, −y+3/2, z+1/2; (vi) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2740).

References

  • Bruker (2007). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clément, S., Meyer, F., De Winter, J., Coulembier, O., Vande Velde, C. M. L., Zeller, M., Gerbaux, P., Balandier, J.-Y., Sergeyev, S., Lazzaroni, R., Geerts, Y. & Dubois, P. (2010). J. Org. Chem.75, 1561–1568. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. (2005). Chem. Rev.105, 1491–1546. [PubMed]
  • Lu, W. & Lieber, C. M. (2007). Nat. Mater., 6, 841–850. [PubMed]
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Mishra, A., Ma, C.-Q. & Bauerle, P. (2009). Chem. Soc. Rev.109, 1141–1276. [PubMed]
  • Osaka, I. & McCullough, R. D. (2008). Acc. Chem. Res.41, 1202–1214. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yamamoto, T., Sato, T., Lijima, T., Abe, M., Fukumoto, H., Koizumi, T., Usui, M., Nakamura, Y., Yagi, T., Tajima, H., Okada, T., Sasaki, S., Kishida, H., Nakamura, A., Fukuda, T., Emoto, A., Ushijima, H., Kurosaki, C. & Hirota, H. (2009). Bull. Chem. Soc. Jpn, 82, 896–909.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography